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MULTI-PHYSICS COMPUTATIONS 

SECTION AT ARGONNE



▪ Core Capabilities & Model Developments:

– Exascale Computing with high-order Nek5000 code, Multi-phase and Reacting flow modeling, AI/ML for fast/efficient design.

▪ HPC for multi-scale, multi-physics applications serving DOE offices, DOD agencies, and industry:

– Piston Engines, Gas Turbines (GTs), Rotating Detonation Engines (RDEs), Scramjets, etc. 

– Electric motor cooling, External aerodynamics, Heat exchangers, Energy storage in phase change materials, Manufacturing 

processes, Electrospinning, Carbon capture, Heat pumps, After-treatment devices, Burners, and several other applications.
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Next-gen supercomputers

2022

Aurora: Exascale Machine

▪ Connected file systems for efficient work and 

data sharing across multiple resources.

▪ Multiple hybrid HPCs: Theta-GPU (3.9 petaflops), 

Polaris (44 petaflops), Aurora (1 exaflops).

▪ Development of GPU-ready nekRS for DNS @ Exascale.

▪ One of lead labs of AI for Science Initiative (https://www.anl.gov/ai-for-science-report)

▪ Testbed for Emerging AI hardware (https://ai.alcf.anl.gov/#systems)

Theta/Theta-GPU

GPUs provide 10-15x speed-up over CPU

Ameen et al., DOE Advanced Engine 

Combustion Review Meeting, Aug 10-13, 2021

2017-present

Polaris (GPU only)

2021

COMPUTING CONTINUUM @ ARGONNE
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https://www.alcf.anl.gov/alcf-resources/theta
https://www.alcf.anl.gov/alcf-resources/computing-resources/polaris
https://www.alcf.anl.gov/aurora
https://www.anl.gov/ai-for-science-report
https://ai.alcf.anl.gov/#systems


High-fidelity wall-

resolved LES at 

limited conditions

~0.1-0.5 mm grid size

O (103-104) processors
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High-throughput 

design space 

exploration –

RANS

DNS for generating 

gold-standard datasets 

at select conditions

LEVERAGE A 

MULTI-FIDELITY 

SIMULATION 

FRAMEWORK TO:

▪ Improve understanding 

of flow and combustion 

processes

▪ Develop physics-

based and data-driven 

subgrid models

▪ Perform simulation-

based design 

optimization

▪ Develop surrogate 

models for fast 

design optimization

~0.5-1 mm grid size

O (100) processors

~10 μm grid size

O (104-105) processors

CAPABILITY COMPUTING

CAPACITY COMPUTING

Surrogate Models for 

design optimization

VISION: MULTI-FIDELITY MODELING FRAMEWORK 
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Closed-cycle DNS

Open-cycle LES

LES > 95M grid points

DNS > 430M grid points

▪ High-order in space (spectral element method, 5th - 15th order) 
and in time (up to 3rd order) with new capability to capture 
compressibility effects.

▪ Body-fitting capabilities for complex geometries.

▪ Arbitrary Lagrangian Eulerian capabilities to handle moving 
geometries.

▪ Overset mesh capability to handle multiple overlapping meshes.

▪ Demonstrated scalability on more than 500,000 processors.

▪ nekRS - the GPU variant of Nek5000:
– One of few GPU-ready exascale codes under active development 

leveraging ~$15M ASCR investment.
– 10-15 times speedup compared to Nek5000.
– Scales on ~30,000 GPUs.

▪ Ideal for gold-standard DNS/LES for complex flow problems and 
develop/improve physics and ML based models.

Nek5000/nekRS:  Exascale CFD code (ECP-funded)

GOLD-STANDARD DNS/LES 
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DNS > 350M grid points



CFD MODEL DEVELOPMENT USING DNS/LES
Predictive sub-models to improve simulation accuracy

Multi-phase flow
• Droplet velocity, size distribution, spray con angle.

• Cavitation, erosion / spray-wall interaction.

Gas injection & mixing
• Gas-jet structure, mixing w/ surrounding gas.

Ignition
• Arc elongation, restrike.

• Flame kernel evolution.

Combustion
• Turbulent combustion with 

deflagration, auto-ignition.

• Flame instabilities, lean 

blow-out, lift-off length.

• Abnormal combustion.

Heat transfer
• Surface roughness.

• Conjugate heat transfer.
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Supervised learning: regression

Unsupervised: dimensionality reduction and anomaly detection Supervised: classification

Deep learning augmented 

chemical kinetics solvers
Ensemble ML + Active 

Learning for efficient engine 

design optimization

AI-driven understanding of 

rare-events in engines
ML-driven CFD surrogate 

development

OVERVIEW OF MACHINE LEARNING CAPABILITIES
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MODELING H2 RECIP. ICEs

FOR PROPULSION AND POWER



CFD MODELING NEEDS FOR H2 RECIP. ICEs

Fuel Injection
• Gas-jet structure (mesh 

refinement, turbulence 

modeling, discretization 

order, timestep).

• Mixing with surrounding 

gas (mesh refinement, 

turbulence modeling, 

discretization order, 

mixing model).

Ignition
• Conventional SI 

(discharge model, 

flame kernel growth).

• Advanced ignition 

(discharge model, 

flame kernel growth, 

turbulence, kinetics).

• Diesel pilot (spray 

models, mixing model, 

kinetics).

Combustion
• Flame instabilities 

(turbulent combustion 

modeling, kinetics, 

transport properties).

• Pre-ignition (CHT 

calculations, kinetics).

• Knock (CHT, knock 

modeling, kinetics).

Heat Transfer
• Wall temperature (CHT 

modeling).

• Wall heat fluxes (mesh 

refinement, turbulence 

modeling).

• Flame-wall interaction 

(quenching model).
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DIRECT INJECTION OF H2 FOR RECIP. ICEs
Impact of DI strategies on efficiency/emissions

▪ Argonne led high-efficiency H2 ICE light-duty research for DOE 

between 2005 and 2012, in collaboration with Sandia, Ford, Westport.

▪ Several injector nozzle configurations tested by CFD. 

▪ Met all the goals set by DOE:

– 45.5% BTEPEAK, 33.3% BTE at WWMP

– 14.3 bar BMEP, emissions within SULEV
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13-h nozzle
CFD model validation

▪ Accurate prediction of the gas-jet 

penetration and evolution during 

compression stroke.

▪ Under-prediction of mixing between 

injected fuel and ambient gas.

▪ Complex geometries worsened 

agreement (jet-to-jet interaction).

PLIF data from SNL: https://ecn.sandia.gov/engines/hydrogen-engine/ 



RECENT PROGRESS ON DI H2 ICE MODELING
Impact of meshing strategies
▪ Best mesh strategies (inlaid mesh) delivers improved 

agreement with optical data in terms of initial jet 

behavior (penetration and impingement on walls).

▪ Rotated mesh loses its advantage after the gaseous 

jet impinges on the wall (mesh not aligned to the wall).

▪ Mesh alignment and refinement along the walls 

proved to be effective in improving CFD results.

Work in collaboration with Aramco Research Center – Detroit and funded by Aramco Americas
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[1] https://ecn.sandia.gov/engines/hydrogen-engine/ 

Main Conclusion: Despite significant improvements, 

fuel/air mixing continues to be under-predicted

Standard Mesh (Cost: 100%)    Inlaid Mesh (Cost: 92%)     Rotated Mesh (Cost: 86%)



Impact of Turbulent Schmidt number: 

▪ Closer agreement of H2 recirculation cloud at early 

stage is observed with 𝑆𝑐𝑡 = 0.5.

▪ Reducing 𝑆𝑐𝑡 increases the fuel dispersion due to 

enhanced diffusion. 𝑆𝑐𝑡 = 0.5 is suggested.

▪ Further investigation (e.g., higher fidelity simulation) 

is conducted to improve prediction of fuel dispersion.

RECENT PROGRESS ON DI H2 ICE MODELING
Impact of turbulence modeling

𝑺𝒄𝒕 = 𝝂𝒕/𝑫𝒕
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Future directions:

▪ Evaluate LES + finer meshes to improve mixing.

▪ Preliminary results with LES are very encouraging. 

PLIF                   RANS                  LES

Worked performed as part of the IMPACT Consortium funded by Aramco Americas



UNDER-EXPANDED GAS-JET MODELING
Validation of CFD results against high-fidelity X-ray diagnostics

High-pressure DI

▪ Inward opening injector.

▪ Argon gas injected at 100 bar.

▪ Ma disk location well captured.

▪ Shock structure fairly captured.

▪ Gas-jet mixing poorly captured 

(especially in the far field).

X-ray data: Courtesy of C. Powell (ANL)
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COARSENING

Low-pressure DI

▪ Outward opening injector. 

▪ Argon gas injected at 10-15 bar.

▪ Good validation against X-ray for ≈15-30mm meshes.

▪ Coarsening the mesh makes the agreement worse.

▪ Typical CFD engine simulations use much less fine 

meshes (≈ 100-200mm).



H2 DI/MIXING MODEL DEVELOPMENT
▪ Leverage recent developments in fully-compressible Nek5000 

version to capture shock structure of under-expanded jets.

▪ DNS can support the development of LES/RANS sub-models 

to improve CFD predictions of fuel/air mixing processes.

▪ Initial 2-D DNS calculations carried out to evaluate impact of 

flow conditions (pressure ratio, velocity, etc.) on the shock 

structure and mixing between gaseous jet and ambient gas.
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Instantaneous mass fraction and density from 2-D Nek DNS of the injector opening transient (pressure ratio = 15:1)



Lagrangian Eulerian Spark-Ignition (LESI) Model

• Fully developed circuit modeling capabilities.

• Coupled with LES/RANS combustion models (G-Eq, TFM, WSR).

• Ready for simulating complex devices (e.g., IC engines).

Ignition 

Source 

Evolution

Spark-ignition event 

in a cross flow

LTP Ignition
Advanced deposition model 

to mimic multi-pulse LTP 

discharge. Leverage high-

fidelity plasma simulations.

Pre-Chamber SI
Leverage existing SI 

combustion models and 

defines best-practices to 

simulate PC SI engines.

Flame 

kernel 

growth

High-fidelity CFD models for spark-ignition processes

Engineering CFD models for alternative ignition

ADVANCED IGNITION MODELING
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Schlieren data from our partners 

at MTU, SNL, Stellantis



FLAME WALL QUENCHING MODELING
▪ G-Equation is a commonly-used model for under-resolved turbulent premixed flames.

▪ Flame-wall interaction is important as flame propagates toward cylinder walls.

▪ The quenching distance 𝛿𝑄 is proportional to laminar flame thickness: 

o 𝛿𝑄 = 𝑃𝑒𝛿𝑓

▪ The G-Eq. model available in CONVERGE is not able to predict 

the flame quenching when flame approaches the wall.

▪ A flame quenching model based on:

o Large heat loss when flame is too close to the wall (𝑦𝑤 < 𝑃𝑒𝛿𝑓)

o Extremely large local Karlovitz number (Ka𝛿 > Ka𝛿
𝑐𝑟𝑖𝑡)

▪ The new model was implemented in CONVERGE using UDFs.
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▪ Objective: Tune model parameters in the Rakopoulos model formulation to improve wall 

heat flux prediction by using DNS:

▪ Performed optimization of the Rakopoulos heat transfer model using DNS data.

▪ Changing (A,B) from (0.4747,10.2394) to (0.7,5.0) reduced model error to < 30% for 

near-wall grid sizes < 1 mm across different RPMs and CADs.

HEAT TRANSFER MODELING
▪ Performed the first ever DNS of compression/expansion of TCC-III motored 

operation at 500-800 RPM.

▪ Validated the flowfield and heat transfer using experimental measurements to 

increase confidence in the accuracy of the DNS. 

▪ A-priori evaluation of the accuracy of existing 
wall models.

▪ Model error for Rakopoulos model as a function 
of near-wall grid size.

Red: 500 RPM

Blue: 800 RPM

Red: 500 RPM

Blue: 800 RPM
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H2 COMBUSTION FOR 

NON-ICE APPLICATIONS



▪ Unsteady RANS CFD calculations were performed to identify 

flame structure and onset of flashback.

▪ Simulations showed that stock hardware could sustain 

flashback-free combustion up to 75% H2.

▪ Experimental investigations corroborated the simulation 

predictions.
Temperature contour for a non-flashback condition/fuel blend

Impact of H2 on flame shape and stabilization
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H2-NG COMBUSTION IN CHP MICROTURBINES

50% CH4/50% H2 10% CH4/90% H2 ▪ Impact of flame stabilization on:

• Combustion efficiency

• Emissions (NOx, CO)



Benefits, Applications, and Challenges
▪ Faster and more intense heat release, decreased entropy generation, 

more available work and thermal efficiency than deflagrative combustion.

▪ Steady source of thrust. Compact design with no moving parts.

▪ Well-suited for hypersonic aircraft/rocket propulsion as well as stationary 

power generation.

▪ Multiple operating/design variables; complex design optimization difficult 

to handle with experiments alone.

Challenges associated with RDE modeling:

❖ High CFD simulation cost and runtime: Need to capture detonation/shock fronts and account for full-scale RDE 

geometry and detailed chemistry; O(100M) cells; comprehensive parametric analysis becomes prohibitive.

❖ Analysis/quantification of non-ideal combustion: Lack of automated diagnostic tools that can be applied to large RDE 

simulation datasets to analyze and quantify non-ideal deflagrative losses.

H2 ROTATING DETONATION ENGINES (RDES)

Argonne’s model development:

▪ Predictive/efficient LES/URANS for full-scale RDEs using AMR.

▪ Combustion diagnostic tool based on CEMA to quantify non-ideal losses.

▪ Successfully applied to a variety of fuels (Hydrogen, ethylene, methane).
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DNS OF H2 JETS IN A CROSSFLOW

▪ Application to propulsion systems such as GTs, 

scramjets, and rockets.

▪ Simulation validated against experimental data from 

Georgia Tech JICF facility.

▪ Nek DNS reveal unsteady vortex structures, typically not 

captured using lower order numerics (e.g., RANS).

▪ High-order code better predicts mean jet trajectories, 

velocity RMS, and flame structures.

Nek-DNS vs. CONVERGE-RANS

Flow and flame structuresJet trajectory

Polynomial order of 8, 91M grid points
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