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The Advanced Engineering Centre at University of Brighton has a long
history of combustion engine research and industrial collaboration
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Heavy duty vehicles and machines must meet operators requirements and
environmental objectives
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This presentation explores potential for Hydrogen ICE to meet these
requirements, including Brighton Ricardo test results and literature evidence

Hydrogen Proteus Conversion

Volvo D13 12.8L diesel, 131mm
bore, 158mm stroke

D13 piston machined to give a plain
bowl shape and reduced
compression ratio

o Cylinder Head

Scania OC13 CNG unit head
modified for direct injection
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S system

Custom spark ignition system using
AEM smart coill

W = Injection

Borg Warner prototype H2 injector
- | System (35 bar injection pressure)
Throttle Throttle located pre-intake manifold.
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The single cylinder test is investigating direct injection hydrogen
combustion over a range of EGR and air fuel ratios, across the operating
range

mInstrumentation

High speed logging — intake and exhaust manifold pressure, cylinder pressure,
spark and ignition timing

Low speed logging — engine and test cell temperatures and pressures, cylinder
head temperatures, fuel flow rate (Bronkhorst F113-AC mass flow meter)

Emissions — 2 Mexa 7000s intake and exhaust, plus prototype Horiba HYyEVO
hydrogen analyser

mEGR system
Cooled EGR (~70°C to maintain water content)
. O2air — O2intake pra—
Rate calculated from intake and exhaust O, content EGR rate (%) = : e
O2air — O2exhaust 'ﬁ
= Air flow rate controlled by critical flow nozzles to avoid pulsations, fuel by injector 'l;

opening time gl

mFor each test condition, spark timing adjusted to give 50% MFB at 8°ATDC, fuel
and air flow rates are adjusted to give required BMEP and AFR



The need for zero impact air quality emissions means that very low NOx is
vital, work shows that this is possible

mReducing combustion temperatures via high AFR, EGR and water injection have been shown to reduce
NOx for H2 ICE

Composition of NOx as various excess air ratio
EGR rate (%)
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Fig. 12 — Variation of NOx emission with EGR rate and 24| 4 cylinder PFI engine

water injection.

28kW 4 cyl, PFI engine
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Research also shows that hydrogen injection properties can also affect NOx
emissions
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Fig. 8 — Conceptual geometry to show location of injected A
jet relative to combustion chamber wall for changes in Fig. 11 — Effect of nozzle hole diameter on thermal
injection angle. efficiency and NOx formation for varied SOI.

Source: Yasuo Takagi, Masakuni Oikawa, Ryota Sato, Yoshihisa Kojiya, Yuji Mihara, Near-zero emissions with high thermal efficiency realized by optimizing jet plume location relative to combustion chamber wall, jet
geometry and injection timing in a direct-injection hydrogen engine, International Journal of ~ Hydrogen Energy, Volume 44, Issue 18, 2019, https://doi.org/10.1016/j.ijhydene.2019.02.058.
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Brighton and Ricardo test work shows that very low NOx emissions in an
HD representative engine are possible, with 35 bar direct injection
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Adding EGR allows further NOx reductions, although combustion stability
reduces at EGR rates above 35%
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IR e NOX emissions, 900 rpm and 1400 rpm, 9 bar GIMEP, lambda and EGR sweeps
NOx emissions —900 rpm NOx emissions — 1400 rpm
10000 10000
€ —e—Lambda 2 € Te-Lambda 2
2 1000 —e-Lambda 3 2 1000 Lambda 2.5
- ~ —eo—Lambda 3
C (e
-% 100 'g 100 /
> 10 > 10
@) O
=2 =
1 1
0 10 20 30 40 0 10 20 30 40

EGR rate (%) EGR rate (%)



Consideration of well to wheels greenhouse gas emissions is vital to ensure

hydrogen use gives climate benefits
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Hydrogen has no tailpipe
emissions, but consideration of
fuel production emissions is vital
to ensure genuine climate
benefit

This data from ZEMO shows
WTT emissions for hydrogen
dispensed at 350 bar

Note that fossil diesel WTT
emissions are 15-20 g CO,/MJ

GHG

emissions
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http://zemo-ebooks.org.uk/2021/Hydrogen-WTT-Pathways-Study-Full-Report/#p=12
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For heavy duty vehicles and machines, performance is not desirable it’s
essential to complete the work

mHeavy duty engines must be able to produce high power and torque required by operator duty cycles

mFor hydrogen engines, there are particular challenges for high load operation including injection system
capability for high flow rates, high air flows for the high lambda needed for low NOx and increased
likelihood of adverse combustion

mFor a light duty engine, Chi et al used 2 VGTs with an electric supercharger to give high power operation
with reduced air fuel ratio, high speed torque was limited by knock (more later)
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The commercial environment for heavy duty operators is tough, with low
profit margins, so cost of ownership is very important

44T diesel artic cost of ownership, 2020 Cost of ownership is dominated by fuel
costs, which means that fuel efficiency
Is important

Driver costs are the second largest
contributor, so lowering driver
productivity (eg through longer
refuelling times) will have a significant
negative impact

Vehicle purchase cost, depreciation
and life span are also important
contributors

= Driver m |[nsurance, finance & tax
= Fuel & adblue = Maintenance & tyres
= Depreciation ownership

Cost of




Hydrogen ICE could offer a cost advantage over H2FC reducing vehicle cost b

Engine/fuel cell system 41" $/kW @350kW- 195 $/kW° @190 kw* 42° $/kW @350kW 80 $/kW* @190 kw-
$14.4k $37.1k $14.4k $15.2k
Fuel tanks 365 $/kg* @70kg- 365 $/kg* @70kg 200 $/kg* @70kg* 200 $/kg® @70kg*
$25.5k $25.5k $14k $14k
Battery N/A 97 $/kWh* @ 73 kWh* N/A 63 $/kWh* @ 73 kWh*
$7.1k : 545k

Table 1 - Cost estimates for H2FC and H2ICE powertrains in 2025 and 2035. Cost estimates are based on the following references:
a. Advanced Propulsion Centre roadmaps 2020

b. Ricardo analysis

e. Hyundai Xcient specification (Hyundai Motor's Delivery of XCIENT Fuel Cell Trucks in Europe Heralds Its Commercial Truck Expansion to Global
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On the road fuel consumption data for H2FC and H2 ICE shows that H2 ICE
could give lower fuel costs for higher load applications
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Hydrogen slip impacts efficiency and potentially greenhouse gas
emissions, data shows increases with lambda and EGR

IR oemem™ H, emissions, 900 rpm and 1400 rpm, 9 bar GIMEP, lambda and EGR sweeps

Hydrogen emissions — 900 rpm Hydrogen emissions — 1400 rpm
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Adverse combustion conditions such as knock, misfire and backfire all
need to be managed to maintain durability

niversity of Brighton

= A combination of low ignition energy and wide AR - —— Knock intensity, 900 rpm
flammability range means that hydrogen combustion

is particularly susceptible to adverse combustion 18
conditions 16
—e—14 bar GIMEP
mSpark ignition - knock caused by random ignition of ~ _ 14 9 bar GIMEP
end gas with influence of in cylinder pressure waves o 12 3.5 bar GIMEP
>
=Compression ignition — knock related to combustion 2 19
rate, occurring at the beginning of combustion E 8
mLikelihood of knock affected by a range of factors: é 6
compression ratio, intake temperature, air fuel ratio, 4 \
ignition timing, combustion chamber hot spots, \
mixture homogeneity and turbulence, engine speed 2
0
mEGR and water injection have been shown to reduce 2 2.5 3 3.5 4 4.5
knock propensity Air fuel ratio

Note: ignition timing changes for some points



Brighton Ricardo test work has shown the relationship between backfire
and preignition for this direct injection engine
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To succeed, hydrogen engines must meet heavy duty operator
requirements and environmental objectives

mNear zero NOx emissions are possible with high sWTT emissions of H, can mean that hydrogen
air fuel ratios, EGR and water injection powertrain WTW GHG emissions are worse than
fossil diesel
m|f high AFRs are used to manage NOx, the high
air flow rates needed require boost system mFurther work at Brighton — hydrogen fuelled
development recuperated split cycle engine
mKnock and preignition must be carefully managed = Thanks for your attention and questions, stay in

to support durability | touch: p.a.atkins@brighton.ac.uk
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