### Tri-Fuel Combustion: Spray Assisted Ignition of Methanol-Hydrogen Blends

M. Gadalla, O. Kaario, and V. Vuorinen, Aalto University, Finland



Gadalla, Kaario et all, Int. Journal of Hydrogen Energy, 2021





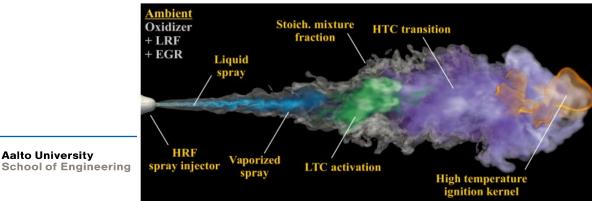
#### **Background and motivation**

-Dual-fuel (DF) and Tri-fuel (TF) ignition concept

#### **Objectives and numerical setup**

-0D and 3D ECN Spray A baseline

#### **Results and conclusions**


-0D and LES



Gadalla, Kaario, Vuorinen et all, Int. Journal of Hydrogen Energy, 2021

### **Dual-fuel and tri-fuel spray-assisted ignition concept**

- Direct injection of the high-reactivity fuel (HRF)
- Lean premixed charge comprising of low reactivity fuel (LRF) and oxidizer/EGR.
- · LRF is introduced to deliver the primary energy
- DF/TF combustion:
  - Dependence on LRFs (methane/methanol/hydrogen) instead of diesel: renewable, low Carbon content (low PM).
  - Lean burn: allows to i) achieve low temperature combustion (minimize NOx), ii) minimize soot emissions.



### **TF H2 / Methanol - Motivation**

- Motivation of this TF work (H2/CH3OH) originates from previous work on methanol versus methane DF at various ambient temperatures (Karimkashi et al., Int. Journal of Engine Research, 2022)
- HRF: n-dodecane. LRF: methane (DF1) or methanol (DF2)
- Tinj = 363 K, Pinj = 150 MPa,  $\rho_{amb} = 22.8$  Kg/m3, O2= 15 %mol, T<sub>amb</sub> =varied
- Narrow T<sub>amb</sub> operational window for smooth ignition was observed for methanol (DF2)

**Hypothesis**: Adding H2 will have the potential to extend the narrow operational window for DF methanol.

Aalto University

School of Engineering

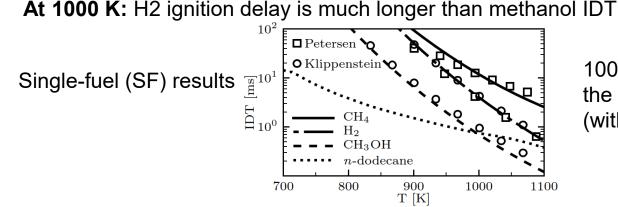


# **Objectives and Numerical setup**

#### **Objectives**:

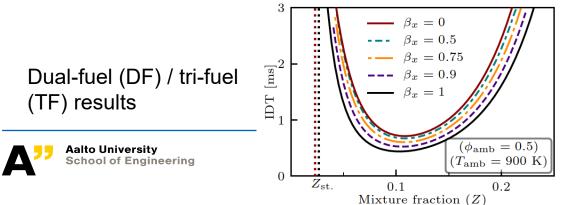
- Use 0D modeling to explore the parameter space in terms of  $T_{amb}$ ,  $\phi_{amb}$ , and  $\beta = [H2]/([H2] + [CH3OH])$  to extend the narrow operational window of methanol utilization
- Use 3D modeling to investigate effects of various blends of H2/methanol and the ignition characteristics in TF context.

#### Spray and ambient conditions (modified ECN Spray A):


- Computational volume is consistent with Sandia combustion vessel.
- Tinj = 363 K, Pinj = 150 MPa,  $T_{amb}$  = 900 K,  $\rho_{amb}$  = 22.8 Kg/m3, O2= 15 %mol.

**Framework**: based on OpenFOAM with finite-rate chemistry. Reduced chemical mechanism (Frassoldati et al., CnF 2015). Chemistry solver is optimized via dynamic load balancing (DLB) and analytical Jacobian.




|                       |                      | SF     | DF     | <b>TF-80</b> | <b>TF-85</b> | <b>TF-90</b> | TF-95  | <b>TF-100</b> |
|-----------------------|----------------------|--------|--------|--------------|--------------|--------------|--------|---------------|
| T <sub>amb</sub>      | [K]                  | 900    | 900    | 900          | 900          | 900          | 900    | 900           |
| $T_{liq}$             | [K]                  | 363    | 363    | 363          | 363          | 363          | 363    | 363           |
| ρ                     | [Kg/m <sup>3</sup> ] | 22.8   | 22.8   | 22.8         | 22.8         | 22.8         | 22.8   | 22.8          |
| $\beta_X$             |                      | _      | 0.0    | 0.80         | 0.85         | 0.90         | 0.95   | 1.0           |
| <b>O</b> <sub>2</sub> | [%, mol]             | 15.0   | 15.0   | 15.0         | 15.0         | 15.0         | 15.0   | 15.0          |
| $N_2$                 | [%, mol]             | 75.15  | 70.729 | 65.677       | 64.948       | 64.098       | 63.093 | 61.888        |
| $CO_2$                | [%, mol]             | 6.23   | 5.864  | 5.445        | 5.384        | 5.314        | 5.231  | 5.131         |
| $H_2O$                | [%, mol]             | 3.62   | 3.407  | 3.164        | 3.129        | 3.088        | 3.039  | 2.981         |
| CH <sub>3</sub> OI    | H [%, mol]           | 0.0    | 5.0    | 2.143        | 1.731        | 1.25         | 0.682  | 0.0           |
| H <sub>2</sub>        | [%, mol]             | 0.0    | 0.0    | 8.571        | 9.808        | 11.25        | 12.955 | 15.0          |
| $\phi_{ m amb}$       |                      | 0.0    | 0.5    | 0.5          | 0.5          | 0.5          | 0.5    | 0.5           |
| $Z_{\rm st.}$         |                      | 0.0435 | 0.0229 | 0.0249       | 0.0252       | 0.0256       | 0.0261 | 0.0266        |

# TF H2/methanol – 0D analysis



1000K: Add H2 to mitigate the ambient auto-ignition (without n-dodecane)

At 900 K: H2 advances n-dodecane/methanol IDT



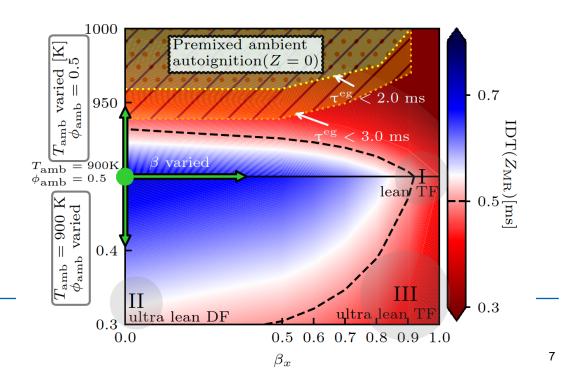
Therefore, adding H2 extends the operational window for methanol DF ignition

Shervin, Kaario, Vuorinen et all, Int. Journal of Hydrogen Energy, 2020

# TF H2/methanol – 0D analysis

Combined effects of  $T_{amb}$ ,  $\phi_{amb}$ , and  $\beta$  variations on IDT<sub>MR</sub> Hatched regions denote autoignition at Z = 0 (no n-dodecane)

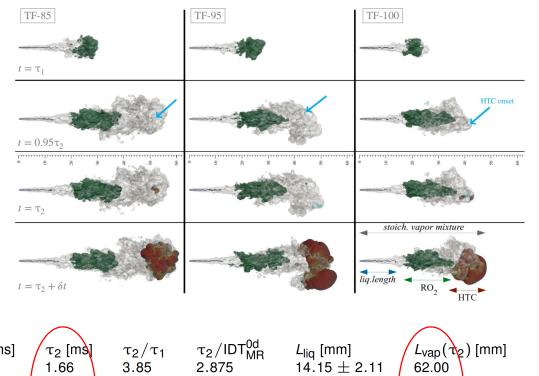
|                  | -                    | SF     | DF     | <b>TF-80</b> | TF-85  | TF-90  | TF-95  | TF-100 |
|------------------|----------------------|--------|--------|--------------|--------|--------|--------|--------|
| $T_{amb}$        | [K]                  | 900    | 900    | 900          | 900    | 900    | 900    | 900    |
| $T_{lig}$        | [K]                  | 363    | 363    | 363          | 363    | 363    | 363    | 363    |
| ρ                | [Kg/m <sup>3</sup> ] | 22.8   | 22.8   | 22.8         | 22.8   | 22.8   | 22.8   | 22.8   |
| $\beta_X$        |                      | _      | 0.0    | 0.80         | 0.85   | 0.90   | 0.95   | 1.0    |
| 02               | [%, mol]             | 15.0   | 15.0   | 15.0         | 15.0   | 15.0   | 15.0   | 15.0   |
| N <sub>2</sub>   | [%, mol]             | 75.15  | 70.729 | 65.677       | 64.948 | 64.098 | 63.093 | 61.888 |
| $\bar{CO_2}$     | [%, mol]             | 6.23   | 5.864  | 5.445        | 5.384  | 5.314  | 5.231  | 5.131  |
| $H_2\bar{O}$     | [%, mol]             | 3.62   | 3.407  | 3.164        | 3.129  | 3.088  | 3.039  | 2.981  |
| CH₃OH            | [%, mol]             | 0.0    | 5.0    | 2.143        | 1.731  | 1.25   | 0.682  | 0.0    |
| $H_2$            | [%, mol]             | 0.0    | 0.0    | 8.571        | 9.808  | 11.25  | 12.955 | 15.0   |
| $\phi_{\rm amb}$ |                      | 0.0    | 0.5    | 0.5          | 0.5    | 0.5    | 0.5    | 0.5    |
| $Z_{\rm st.}$    |                      | 0.0435 | 0.0229 | 0.0249       | 0.0252 | 0.0256 | 0.0261 | 0.0266 |


#### IDT can be advanced through

i) more H2

ii) lower  $\phi_{amb}$ 

iii) higher T<sub>amb</sub>

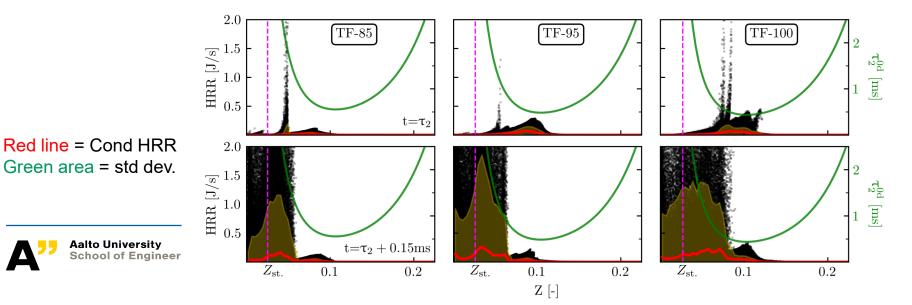

# Ambient autoignition is mitigated with more H2



# **TF H2/methanol – LES analysis**

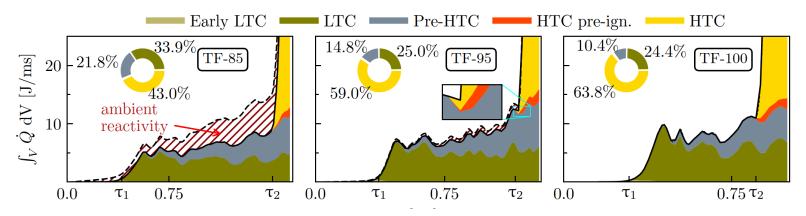
- Five testcases (TF-80 TF-100) are prepared. Below are qualitative and quantitative results.
- Adding H2 advances IDT also in **3D**

Gray color = stoichiometric surface Green color = RO2Red color = Temp > 1600k






|        | $\frown$            |               |                 |                       | $\frown$              |                        |  |
|--------|---------------------|---------------|-----------------|-----------------------|-----------------------|------------------------|--|
|        | τ <sub>1</sub> [ms] | $\tau_2 [ms]$ | $\tau_2/\tau_1$ | $	au_2/IDT_{MB}^{0d}$ | L <sub>lig</sub> [mm] | $L_{vap}(\tau_2)$ [mm] |  |
| TF-80  | 0.43                | 1.66          | 3.85            | 2.875                 | $14.15\pm2.11$        | 62.00                  |  |
| TF-85  | 0.40                | 1.51          | 3.78            | 2.753                 | $14.08\pm2.04$        | 56.73                  |  |
| TF-90  | 0.37                | 1.55          | 4.19            | 2.997                 | $14.03\pm2.09$        | 55.90                  |  |
| TF-95  | 0.36                | 1.16          | 3.22            | 2.430                 | $13.90\pm2.30$        | 50.87                  |  |
| TF-100 | 0.286               | 0.86          | 3.01            | 2.003                 | 13.80 $\pm$ 2.38      | 43.71                  |  |
|        |                     |               |                 |                       |                       |                        |  |


### TF H2/methanol – LES analysis

- Heat release analysis: **scatter plots** from 3D data
- HRR peaks (i.e. first ignition kernels) occur on rich Z, (spray-assisted concept).
- With more H2:
  - Most reactive mixture is richer in Z space (i.e. shorter spray and IDT).
  - Most reactive mixture converges to that in 0D (less mixing time).
  - Later, larger equivalence ratio range



# TF H2/methanol – LES analysis

Heat release maps – Ignition mode decomposition (T=900K)



- Hatched zone denotes ambient reactivity. Pie chart is cumulative HRR mode.
- With more H2:
  - Ambient heat release is mitigated
  - HTC share to THRR is larger

**Table 4:** Criteria for ignition modes.  $RO2^*=10^{-5}$ ,  $H2O2^*=10^{-4}$ ,  $OH^*=10^{-5}$ ,  $T^*=1150$  K

| Mode                                               | Definition                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Early LTC<br>LTC<br>Pre-HTC<br>HTC pre-ign.<br>HTC | $\begin{array}{l} (RO2 \ge 10^{-7}) \cap (H2O2 < H2O2^{\star}) \cap (T < T^{\star}) \\ (RO2 \ge RO2^{\star}) \cap (H2O2 \ge H2O2^{\star}) \cap (T < T^{\star}) \\ (RO2 < RO2^{\star}) \cap (H2O2 \ge H2O2^{\star}) \cap (T < T^{\star}) \\ (OH < OH^{\star}) \cap (T \ge T^{\star}) \\ (OH \ge OH^{\star}) \cap (T \ge T^{\star}) \end{array}$ |



### **TF H2/methanol - Summary**

1. The multi-parametric 0D analysis suggests that a narrow smooth ignitability window of methanol DF can be extended via H2 enrichment. **Advantage of adding H2 is two-fold:** i) its lower reactivity compared with methanol potentially avoids the ambient autoignition without HRF, and ii) its reactivity-promoting effects could advance IDT.

2. **First and second stage IDT are advanced with H2**. Moreover, having twice H2 blending mass ratio (25%-50% or 50%-100%) in the premixed charge is advancing IDT by 23-26%, with shorter penetrations (10-15%) of the vaporized spray.

3. According to ignition mode decomposition analysis, ambient reactivity persists in the system which might raise concerns regarding abnormal ignition or cyclic instability. More than 50% of H2 mass ratio (94% molar) is required to ensure a non-reactive ambient.



Gadalla, Kaario, Vuorinen et all, Int. Journal of Hydrogen Energy, 2021