Powering to a **LOWER CARBON FUTURE** with **GAS**: THE USE OF HYDROGEN IN POWER GENERATION

October 26, 2022

Dr. Jeffrey Goldmeer Emergent Technologies Director GE Gas Power

- Commercial experience using H₂ as a gas turbine fuel
- Technical challenges using H₂ as a gas turbine fuel
- The energy trilemma & the cost of H₂

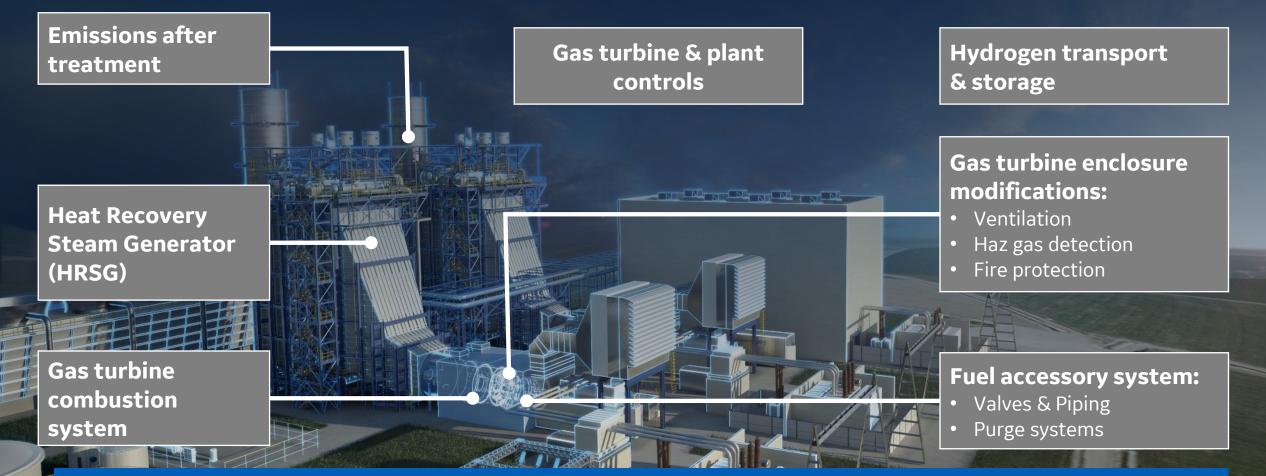
Decades of experience with hydrogen fuel

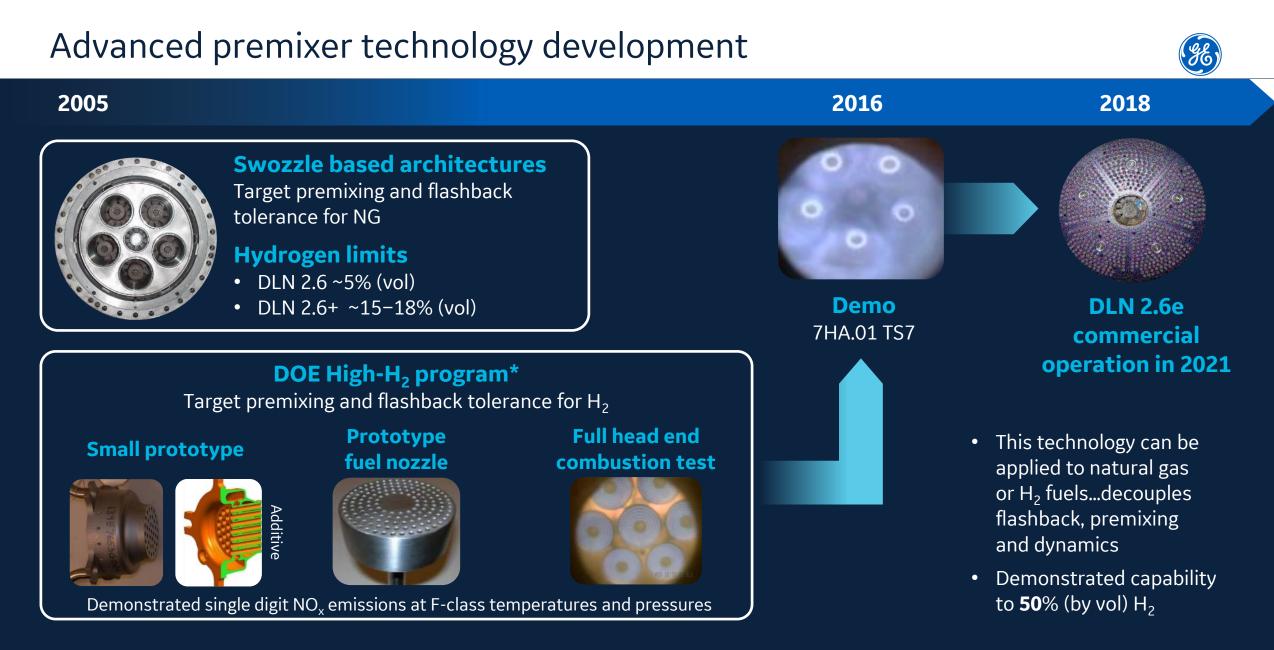
7HA Hydrogen Blending & Operation Demonstration Long Ridge Energy Terminal, Hannibal, OH – April 22, 2022

Project highlight video available <u>online</u>

LM600 NYPA Brentwood Hydrogen demonstration project Brentwood Power Station, NY

Project highlight video available <u>online</u> Project executive summary available <u>online</u>


A tale of three molecules: HYDROGEN, AMMONIA, & METHANE


Characteristics		Methane	Hydrogen	Ammonia
Formula		CH ₄	H ₂	NH ₃
Molecular weight	grams/mol	16	2	17
Boiling temperature	°F (°C)	-258.7 (-161.5)	-423.2 (-252.9)	-28 (-33.3)
Lower/upper flammability limits	%	4.4/17	4/75	15/28
Flame speed	cm/sec	~30-40	~200-300	~6-7
Adiabatic flame temperature	°F (°C)	~3,565	~4,000	~3,270
Lower Heating value	MJ/Nm ³ (BTU/scf)	35.8 (911.6)	10.8 (274.7)	14.1 (360)
NO_x impact (relative to methane)			~2x	~150x

Impact of hydrogen on new and existing power plant systems

These modifications/upgrades can be implemented at both new and existing power plants

Addressing technology challenge – advanced combustion systems

Today's options for hydrogen:

- Diffusion combustion systems which require diluent injection to meet NO_x requirements (lowering efficiency)
- Premixed combustion systems which are H₂ limited due to operability issues (flash back, flame holding)

Challenges for 100% H₂:

- Flashback and flame holding
- Combustor operability
- Combustion system durability
- NO_x emissions
- Plant safety

Heavy-duty gas turbine combustion systems

Diffusion combustors Max $H_2 \sim 70-100\%$

Premixed combustors Max $H_2 \sim 20-30\%$

Advanced premixer Max $H_2 \sim 50\%$

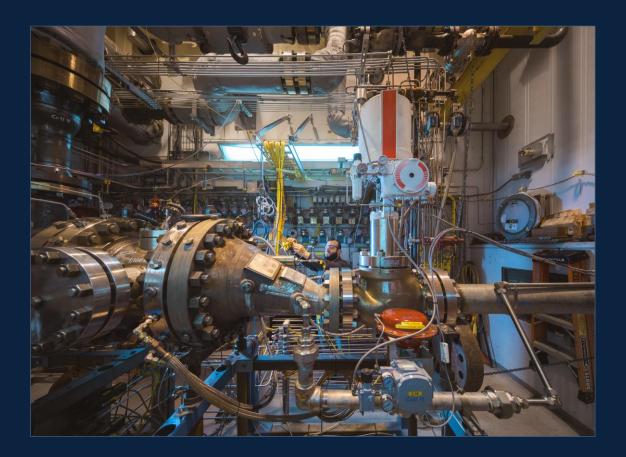
Advanced premixer 100% H₂

Aeroderivative gas turbine combustion systems

Diffusion combustors Max $H_2 \sim 30-85\%$

Premixed combustors Max $H_2 \sim 10\%$

Advanced premixer Max H $_2 \sim 60 \%$

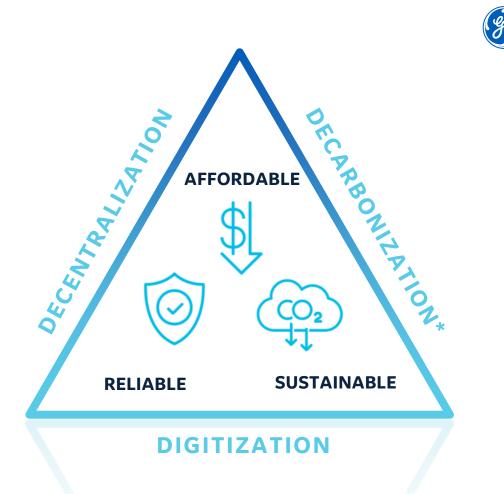

Advanced premixer ~100% H₂

Next generation combustion systems are being developed to operate on high H₂ fuels while meeting stringent emission standards

US DOE funding of GE's hydrogen combustion technology

- The US DOE has selected a GE Gas Power proposal to develop and test a retrofittable combustion module for operation with natural gas/hydrogen fuel mixtures ranging from 100% natural gas levels up to 100% hydrogen. This will project will be based on micromix and axial fuel staging technologies.
- GE's goal is to produce < 25ppm NOx with a stretch goal of 9ppm NOx. (Available emissions control technology can reduce NOx from 25ppm to < 3ppm from the power plant stack.)

https://www.energy.gov/fecm/articles/additional-selections-funding-opportunity-announcement-2400-fossil-energy-based https://www.ge.com/news/press-releases/ge-doe-accelerating-the-path-towards-100-hydrogen-combustion-in-gas-turbines


Energy Trilemma

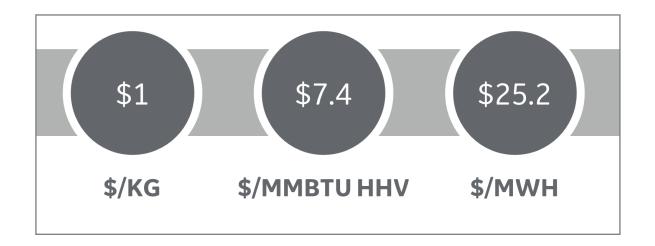
Challenges our customers are facing for electricity generation, delivery and consumption

A mix of generation and grid solutions are required to provide the desired balance between:

- Affordability
- Reliability
- Sustainability

The balance varies significantly by region. Decarbonization actions will be determined locally.

Affordable, reliable and sustainable energy is a basic human right, critical to growing economy and fundamental to quality of life in the modern world


* Decarbonization as used herein is intended to mean the reduction of carbon emissions on a kilogram per megawatt hour basis.

Hydrogen cost conversions and comparisons

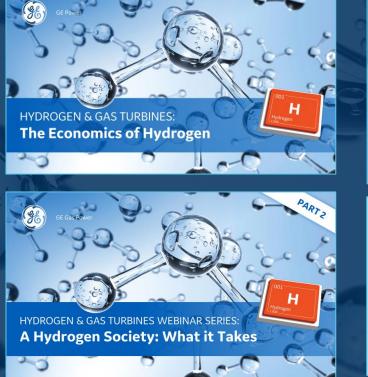
Hydrogen cost conversions

Comparative fuel prices*

	Price (\$/MMBTU)			
Fuel	~2019	2022 (Oct)		
Gasoline	~26.4	~30		
Jet-A (Aviation)	~11.1	~29		
Natural gas (Henry Hub)	~3.8	~7.9		

Externally, there is a large focus on getting (green) hydrogen to \$7.4/MMBTU by 2030. This may support other industries, but it does not automatically make green hydrogen an economical gas turbine fuel

For more information: www.gepower.com/hydrogen



Hydrogen as a fuel for gas turbines A pathway to lower CO₂

White paper

Webinars

Carbon emissions calculator

Season 6 coming soon

