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H2 ICE – a brand new invention!

Rivaz engine (~1806)

1813 Isaac de Rivaz tested the first 
hydrogen powered vehicle

It achieved 25 consecutive ignitions

The vehicle ran for 26m with a speed of 
3km/h

This was the first drive of a vehicle 
operated by a gas engine!

https://de.wikipedia.org/wiki/Isaac_de_Rivaz
https://www.automostory.com/first-hydrogen-car.htm

https://de.wikipedia.org/wiki/Isaac_de_Rivaz
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Delivering the European Green Deal

‘The Decisive Decade’

The EU will reduce its net 
greenhouse gas emissions by at 
least 55% by 2030, compared to 
1990 levels, as agreed in the EU 
Climate Law.

On 14 July 2021, the Commission 
presented  proposals to deliver 
these targets and make the 
European Green Deal a reality.

Source: Architecture of the package Factsheet, European Commission, 14.07.2021

 A Prize on carbon and a premium 
on decarbonization.

(Frans Timmermans, Executive Vice-President for the 
European Green Deal, press conference, 14.07.2021)
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MPI or Low Pressure DI

Mixture formation tumble based

MPI or Low Pressure DI

Mixture formation swirl based

Dual Fuel (Diesel + H2)

Carry over cylinder head (swirl)

High Pressure DI

Diesel pilot

High Pressure DI

Carbon neutral ignition

Homogeneous combustion / spark ignited Diffusion combustion / Diesel ignited

H2 Low Pressure H2 High Pressure

H2 Combustion Concepts - Commercial Applications 
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BMEP level: 24 bar

Power: 350 kW

BTE: > 42 %

Post EU VI emission

Transient performance for 
commercial vehicles

Maximum similarities to base engine
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Base Engine: 12,8l Natural Gas

Hydrogen LP-DI and MPI injection

Single stage VGT turbocharger

Cooled EGR for combustion 
moderation and NOx reduction

H2 spark plugs and coils

Diesel derived SCR with        
Urea dosing and PF

Main Specifications
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The AVL Hydrogen Engine: 
Power, BTE, EAR and Raw NOx
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The AVL Hydrogen Engine: 
Power, BTE, EAR and Raw NOx
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AVL Hydrogen Engine: 
EAS Layout for Euro VI

EAS specifications

PF

Diesel derived EAS
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WHTC Test Results – Emitted NOx
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Reduction Strategy of Emitted NOx
with EAS
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Reduction Strategy of Emitted NOx 
without EAS
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→ If the lambda value can be 
kept at > 2.4, emitted NOx
will be minimum without
EAS.  
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Effect Of Different Charging Concepts on Transient and Altitude Performance of 
Hydrogen Fueled Internal Combustion Engines

Boosting Strategies

Conventional turbocharging concepts are considered for H2 engine in terms of performance in high altitude 
and transient conditions. In addition, effect of electric turbocharger assist concepts are also 
investigated.

Conventional concepts:
1. Fixed geometry turbocharger (FGT)

✓ With active wastegate control

2. Variable geometry turbocharger (VGT)

3. 2-stage Turbocharger
✓ High pressure side is VGT
✓ Low Pressure side is FGT
✓ With mid-stage cooler

Electric Turbocharger Assist (ETA):
1. Electrified Compressor (2–stage)

✓ High pressure side is electrified compressor
✓ Low Pressure side is FGT

2. Electrified Turbocharger
✓ Electrified VGT 
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Effect Of Different Charging Concepts on Transient and Altitude Performance of 
Hydrogen Fueled Internal Combustion Engines

Altitude Performace

! Analyses were run at 1000 m altitude and 35°C ambient temperature conditions.
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√ Torque was derated to satisfy compressor outlet 
temperature limit with both FGT and VGT.

√ The highest turbine inlet pressures, FGT had the highest 
pumping losses and lowest BTE at high altitude.

√ FGT and VGT were already at the limit of compressor 
outlet temperature, whereas 2-stage TC had still 
margin for tougher conditions.

Speed FGT VGT 2-Stage TC

- % % %

1.000 10.8 2.8 0.0

0.889 14.4 8.5 0.0

0.778 16.7 14.1 0.0

0.667 12.7 10.9 0.0

0.556 8.7 5.4 0.0

0.444 25.6 0.0 0.0

Torque Derate Comparison of Turbochargers
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Effect Of Different Charging Concepts on Transient and Altitude Performance of 
Hydrogen Fueled Internal Combustion Engines

Transient Performace of Convetional Systems

√ Elapsed time from 10 to 90% of max BMEP with CMR 
2.4 was compared. (Minumum CMR was limited to 2.4)

√ FGT had the longest build-up time to reach 90% of 
BMEP and it was followed by VGT and 2-stage TC. 
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Effect Of Different Charging Concepts on Transient and Altitude Performance of 
Hydrogen Fueled Internal Combustion Engines

Transient Performace of Elecrified Systems

√ Electrified turbocharger and electrified compressor
were utilised to improve response times further to reach 
diesel like response time. 

√ For the electrified turbocharger, 5 kW of electric 
assistance reduced response time of VGT from 11.4 
seconds to 4.4 seconds. 

√ Electrified compressor with a 15 kW electric assistance 
reached 90% BMEP in 6.7 seconds.  There is only a 
0.5 s improvement.

√ Electrified turbocharger  had better response times than 
that of electrified compressor concept for this 
arthitecture.
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! Although electrified compressor has a satisfied
performance in this study, it holds more potential.
As a further study, research for better performance can be
conducted by different structures and optimized strategy.
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Summary and Conclusions

• Hydrogen will play an important role in carbon neutral mobility

• The AVL Hydrogen Engine demonstrated high torque and power levels, high efficiency –

even in transient operation – and low emissions (post EU VI capability)

• Low NOx emissions at all conditions were secured by limiting the CMR to 2.4

• At altitude condition, Only 2-stage concept satisfied the target torque for all speeds with

CMR 2.4

• At transient condition, performance of 2-stage turbocharger was the best, followed by VGT

and FGT. Despite the best performance of 2-stage turbocharger, the response time was more

than diesel

• Depending on the supplied electrical power, response time was similar or even better than

diesel by the use of electrified turbocharger.

• Theoretically, the approach of lean lambda (λ≥2.4) operation, is promising in order to be zero

emission engine, but extra caution is required in commercial application to ensure zero

emission and extra effort is required for final evaluation.
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İlker Güler
Team Leader - Powertrain Concept Development
ilker.guler@avl.com

Thank you…. 


