

Hydrogen-Based Mobility and Power – KAUST'22

Effect Of Different Charging Concepts on Transient and Altitude Performance of Hydrogen Fueled Internal Combustion Engines

Guler, Ilker

AVL Arastirma Ve Mühendislik Sanayi Ve Ticaret Limited Sirketi (Research and Engineering)

H₂ ICE – a brand **new** invention!

Rivaz engine (~1806)

1813 Isaac de Rivaz tested the first hydrogen powered vehicle

It achieved 25 consecutive ignitions The vehicle **ran for 26m** with a speed of 3km/h

This was the first drive of a vehicle operated by a gas engine!

https://de.wikipedia.org/wiki/Isaac_de_Rivaz https://www.automostory.com/first-hydrogen-car.htm

Delivering the European Green Deal

'The Decisive Decade'

The EU will **reduce its net** greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels, as agreed in the EU Climate Law.

On 14 July 2021, the Commission presented proposals to deliver these targets and make the European Green Deal a reality.

A Prize on carbon and a premium on decarbonization.

(Frans Timmermans, Executive Vice-President for the European Green Deal, press conference, 14.07.2021)

/ 3

Public

Source: Architecture of the package Factsheet, European Commission, 14.07.2021

H₂ Combustion Concepts - Commercial Applications

AVL Hydrogen Engine Targets

BMEP level: 24 bar Power: 350 kW BTE: > 42 % Post EU VI emission Transient performance for commercial vehicles Maximum similarities to base engine

AVL Hydrogen Engine Main Specifications

Base Engine: 12,8l Natural Gas Hydrogen LP-DI and MPI injection Single stage VGT turbocharger Cooled EGR for combustion moderation and NO_x reduction H₂ spark plugs and coils Diesel derived SCR with Urea dosing and PF

The AVL Hydrogen Engine: Power, BTE, EAR and Raw NO_x

Public / 7

Guler, Ilker | | 24 October 2022 | 🛛 🗛 🕺

The AVL Hydrogen Engine: Power, BTE, EAR and Raw NO_x

Public

Guler, Ilker | | 24 October 2022 | 🛛 🗛 🕺

AVL Hydrogen Engine: EAS Layout for Euro VI

EAS specifications

Diesel derived EAS

WHTC Test Results – Emitted NOx

Reduction Strategy of Emitted NOx with EAS

Reduction Strategy of Emitted NOx without EAS

Effect Of Different Charging Concepts on Transient and Altitude Performance of Hydrogen Fueled Internal Combustion Engines

Boosting Strategies

Conventional turbocharging concepts are considered for H₂ engine in terms of performance in **high altitude and transient conditions**. In addition, effect of **electric turbocharger assist** concepts are also investigated.

Conventional concepts:

- 1. Fixed geometry turbocharger (FGT)
 - \checkmark With active wastegate control
- 2. Variable geometry turbocharger (VGT)
- 3. 2-stage Turbocharger
 - ✓ High pressure side is VGT
 - ✓ Low Pressure side is FGT
 - ✓ With mid-stage cooler

Electric Turbocharger Assist (ETA):

- 1. Electrified Compressor (2-stage)
 - ✓ High pressure side is electrified compressor
 - ✓ Low Pressure side is FGT
- 2. Electrified Turbocharger
 - Electrified VGT

Effect Of Different Charging Concepts on Transient and Altitude Performance of Hydrogen Fueled Internal Combustion Engines

Altitude Performace

Public

/ 14

 \checkmark Torque was derated to satisfy compressor outlet temperature limit with both FGT and VGT.

 $\sqrt{}$ The highest turbine inlet pressures, **FGT** had **the highest pumping losses** and **lowest BTE** at high altitude.

✓ FGT and VGT were already at the limit of compressor outlet temperature, whereas 2-stage TC had still margin for tougher conditions.

Speed	FGT	VGT	2-Stage TC
-	%	%	%
1.000	10.8	2.8	0.0
0.889	14.4	8.5	0.0
0.778	16.7	14.1	0.0
0.667	12.7	10.9	0.0
0.556	8.7	5.4	0.0
0.444	25.6	0.0	0.0

Torque Derate Comparison of Turbochargers

! Analyses were run at 1000 m altitude and 35°C ambient temperature conditions.

Effect Of Different Charging Concepts on Transient and Altitude Performance of Hydrogen Fueled Internal Combustion Engines

Transient Performace of Convetional Systems

 \checkmark Elapsed time from 10 to 90% of max BMEP with CMR 2.4 was compared. (Minumum CMR was limited to 2.4)

 \sqrt{FGT} had the longest build-up time to reach 90% of BMEP and it was followed by VGT and 2-stage TC.

TC Concepts	Time 0%-90% [s]	
FGT	13.1	
VGT	11.4	
2-Stage TC	7.2	

Transient Response Time Comparison of Different Turbocharger Concepts

Effect Of Different Charging Concepts on Transient and Altitude Performance of Hydrogen Fueled Internal Combustion Engines

Transient Performace of Elecrified Systems

Results with Electrified Compressor

Public

/ 16

- ✓ Electrified turbocharger and electrified compressor were utilised to improve response times further to reach diesel like response time.
- ✓ For the electrified turbocharger, 5 kW of electric assistance reduced response time of VGT from 11.4 seconds to 4.4 seconds.
- ✓ Electrified compressor with a 15 kW electric assistance reached 90% BMEP in 6.7 seconds. There is only a 0.5 s improvement.
- \checkmark Electrified turbocharger had better response times than that of electrified compressor concept for this arthitecture.

Although electrified compressor has a satisfied performance in this study, it holds more potential.
As a further study, research for better performance can be conducted by different structures and optimized strategy.

Summary and Conclusions

- Hydrogen will play an important role in carbon neutral mobility
- The AVL Hydrogen Engine demonstrated high torque and power levels, high efficiency even in transient operation – and low emissions (post EU VI capability)
- Low NOx emissions at all conditions were secured by limiting the CMR to 2.4
- At altitude condition, Only 2-stage concept satisfied the target torque for all speeds with CMR 2.4
- At transient condition, performance of 2-stage turbocharger was the best, followed by VGT and FGT. Despite the best performance of 2-stage turbocharger, the response time was more than diesel
- Depending on the supplied electrical power, response time was similar or even better than diesel by the use of electrified turbocharger.
- Theoretically, the approach of lean lambda (λ≥2.4) operation, is promising in order to be zero emission engine, but extra caution is required in commercial application to ensure zero emission and extra effort is required for final evaluation.

İlker Güler

Team Leader - Powertrain Concept Development ilker.guler@avl.com

