

Technologies and Trends in H₂ Combustion Engines / Implications on the Test Facilities, Systems and Equipment

KAUST Research Conference: Hydrogen-Based Mobility and Power October 24,2022 Thuwal, Saudi Arabia

Franz Hofer, Johannes Kregar

AVL List GmbH

Public

Content

- Introduction to AVL
- Trends & expectations for H₂-ICE
- H₂-Implications on the Test Facilities, Systems and Equipment
- Summary

Content

• Introduction to AVL

- Trends & expectations for H₂-ICE
- H₂-Implications on the Test Facilities, Systems and Equipment
- Summary

AVL COMPANY PRESENTATION

Facts and Figures

Global Footprint

Represented in 26 countries

45 Affiliates divided over 93 locations

45 Global Tech and Engineering Centers (including Resident Offices)

AVL COMPANY PRESENTATION

Three Disciplines Under One Roof

ENGINEERING SERVICES

- Design and development services for all elements of ICE, HEV, BEV and FCEV powertrain systems
- System integration into vehicle, stationary or marine applications
- Supporting future technologies in areas such as ADAS and Autonomous Driving
- Technical and engineering centers around the globe

INSTRUMENTATION AND TEST SYSTEMS

- Advanced and accurate simulation and testing solutions for every aspect of the powertrain development process
- Seamless integration of the latest simulation, automation and testing technologies
- Pushing key tasks to the start of development

ADVANCED SIMULATION TECHNOLOGIES

- We are a proven partner in delivering efficiency gains with the help of virtualization
- Simulation solutions for all phases of the powertrain and vehicle development process
- High-definition insights into the behavior and interactions of components, systems and entire vehicles

Content

- Introduction to AVL
- Trends & expectations for H₂-ICE
- H₂-Implications on the Test Facilities, Systems and Equipment
- Summary

We need to reduce transport-related CO2 emissions by 24 to 30% within this decade to meet net-zero milestone ...

Transport CO2 emissions globally in giga-tons CO2

Source: Global CO2 emissions from transport by sub-sector in the Net Zero Scenario, 2000-2030 - Charts - Data & Statistics - IEA

Public

Where are we now?

Example for the US light-duty fleet and current forecasts based on IHS

Boundaries:

- 1. Fleet size increase considered
- 2. Increasing electrification considered
- 3. Fuel economy improvements considered
- 4. Shift in vehicle archetypes considered

What do results tell us?

- Even though we are planning w/ strong increasingly sales of BEVs, the impact on fleet CO2 emissions is delayed
- 2. If we continue like this, we fall short of meeting NZE milestone 2030
- 3. We need to think about drop-in fuels and increase the introduction of low-carbon technologies w/ a short-time-to-market

Major choices from a powertrain perspective for decarbonization

We need to play on all fields ...

Fuel Cell	BEV	H2 ICE	E-fuels (e.g. FT diesel)
 For on-road applications high TRL High CAPEX & OPEX Uncertain: Robustness, cooling challenge for rather stationary applications, refilling- network Good green image and encouraged by authorities 	 Available technology and ready for use w/ highest efficiency Main challenge for topics like payload, milage range and re-charging time Infrastructure for charging stations needs to be developed. Highest or at least same green image as fuel cell 	 Today's technology needs to be adopted with only minor effort and manageable investment Still lowest technology readiness level for commercial truck applications Social acceptance uncertain, missing policy support 	 Main advantage of using available infrastructure and technology w/ little additional invest Highest effort in view of fuel production costs and energy input (efficiency chain). The social acceptance currently on a low level (In-use emissions)

Where will H2-ICE have best chances for quick commercialization considering competition?

Starting w/ characteristics, their relevance and expected major applications

H2-ICE characteristics

- 1. ICE is a robust system (Dust, shocks & vibrations, temperatures, experience)
- 2. Efficient in high power/load areas
- 3. Quick time-to-market (supply chain, production in place)
- 4. Competitive CAPEX

/ 10

 Engine noise less relevant (High vehicle speed, mining, outside urban areas ...)

What does it take to unleash the full potential of H2-ICE?

... besides H2-ICE engine technology

Technology agnostic boundaries	Storage @ vehicle innovations		
We need boundaries where H2-ICE as (near) zero-emission solutions also enjoys benefits like <u>toll exemption</u> . We need legislations differentiating between ICE w/ fossil fuels and alternative fuels (e.g. <u>city-bans</u>)	We need innovative <u>H2 storage</u> solutions at the vehicles: Required re-filling frequency compared to diesel is a strong disadvantage		
H2 refilling-network	Green hydrogen		

Conclusions

- 1. The H2-ICE is not the only measure to de-carbonize, but its' characteristics might make it a great solution for specific applications
- 2. The engine technology is here, we need to think about the additional parts of the systems to make it work
- 3. It is too early to classify H2-ICE as a "bridging technology", it might well be that we see longer product cycles
- 4. We need to demonstrate the positive impact and to market success to gain back-up for our work

/ 12

Content

- Introduction to AVL
- Trends & expectations for H2-ICE
- H₂-Implications on the Test Facilities, Systems and Equipment
- Summary

Hydrogen - Properties and Impacts on the Test Cell

H₂ ICE Testing – Points to consider

Franz Hofer, Johannes Kregar | PE | 24 Oktober 2022 |

Requirements and Solutions

H₂ Supply

Option: H₂ Generation at site

H₂ Storage & Distribution

✓	Evaluate	hydrogen	consumption
---	----------	----------	-------------

✓ Evaluate the suitable hydrogen storage and supply infrastructure

Evaluate the operational and logistical limits (change frequency)

	_
engine	
[kW]	[kg/h]
50	3,29
100	6,57
150	9,86
200	13,14
250	16,43
300	19,71
350	23,00
400	26,29
450	29,57
500	32,86

Unit	Mass [Kg]	Application	Investment	Units/week * 150kW load	Units/week * 300kW load
Bottle	0.75	(sub-scale) single cylinder and cell investigations	-H2 Distribution -H2 Storage and control renting	-	-
Bundle	9	single cylinder and short-stack investigations	-H2 refilling	113.5	227
Trailer Supertrailer	340 1000	full-size engine and FC systems (small number of stations)		3 ~ 1	6 ~ 2
Liquid tank	3000	full-size engines and FC systems (large number of stations)		0.3	0.6
Electrolyzer + BufferTank	25kg/h ~500kg/d	SOEC Technology High efficiency 1MW green power	-H2 Distribution -Electrolyzer -Maintenance	Continuous H2 supply	Continuous H2 supply

* 80 h/week

Fuel Supply Infrastructure @ AVL Graz Test Factory

H₂ Supply

H₂ Consumption Measurement Requirements and Solution

- ✓ Fitting to Combustion / Injection Concepts providing stable H₂ supply pressure to ICE
- High measurement Accuracy and Repeatability (no influence by the injection-related pulsations)
- Ensuring test cell and operator Safety
 (Leak Check Routines, Purging / Inertization, ..)

/ 19

Exhaust Emission Measurement – H₂ ICE **Requirements and Solutions**

Exhaust Emission Measurement – H₂ ICE Requirements and Solutions

Public

H₂ ICE Testing Requirements and Solutions

H₂ ICE Testing Requirements and Solutions

Adaptation of Instrumentation

H₂ concentration in BBY / crankcase gas above LEL of H₂

Explosion Protection measures required:

- Active crankcase gas (BBY) dilution or
- ✓ Pressure relieve valve
- H₂ sensor in BBY measurement line
- Ex-proof Blow-By Measurement System

H₂ ICE Testing

Test Cell Air Handling / Ventilation & Safety **Requirements and Solutions**

Content

- Introduction to AVL
- Trends & expectations for H2-ICE
- H₂-Implications on the Test Facilities, Systems and Equipment
- Summary

Summary **Test Facility View**

Public

Franz Hofer, Johannes Kregar | PE | 24 Oktober 2022 | AVL 🐝

Summary Test Facility View

Public

Franz Hofer, Johannes Kregar | PE | 24 Oktober 2022 |

AVL 🌺

