

- syn gas, and H_2/CH_4 blend) at CO_2 dilution conditions.
- mechanisms (AramcoMech 2.0 and UoS sCO_2).

- by releasing CO_2 into the atmosphere.
- the Direct-fired super critical cycle.
- super critical cycle.

10

40

40

40

40

40

- As of now, multiple pilot plants have been built up to 300 MW.
- Ignition studies in CO_2 as bath gas are scarce in literature, inhibiting the development and validation of chemical kinetic mechanisms.

Experimental study of hydrogen, syngas and methane ignition in CO₂ bath gas

Tougeer Anwar Kashif, James M. Harman-Thomas, Kevin Hughes, Aamir Faroog

S. No H_2

CO

KAUST Research Conference: Hydrogen-Based Mobility and Power

	85	C
 Extensive in 	85	.2
analysis to c	85	

- letermine the key reactions controlling the IDTs.
- Updating the rates of key reactions in AramcoMech 2.0 from literature and modifying the mechanism to improve its performance for CO_2 diluted mixtures.

- CO₂ addition lowers the reactivity of the mixture, evident
- In an H₂:CH₄ blend, pure H₂ mixture is the most reactive
- CH_{4} addition slows down the reactivity quite significantly.