

Introduction							
Towards decarbonizing combustion technology, ammonia (NH ₃) combustion is considered a promising solution in power generation and transportation sectors							
Pros:Cons:1)Large hydrogen density1)Slow laminar flame speed2)Energy storage2)Low adiabatic flame T3)CO2 free3)Narrow flammability limit4)High ignition energy5)NOx emissions							
The advantages are more attractive over the disadvantages which could be overcome by blending with more reactive fuels (e.g., H ₂). $\int_{1.6}^{1.6} \int_{1.2}^{10^{10}} \int_{0.4}^{1.6} \int_{0.6}^{1.6} \int_{0.4}^{0.6} \int_{0.6}^{0.8} \int_{0.8}^{1.6} \int_{0.6}^{0.6} \int_{0.8}^{0.8} \int_{0.8}^{0.6} \int_{0.8}^{0.8} \int_{0.8}^{0.8} \int_{0.8}^{0.6} \int_{0.8}^{0.8} \int_$							
Turbulent flame characteristics are expected to be different from general hydrocarbon and/or hydrogen flames							
This study is aimed at understanding the turbulence- flame interaction of NH ₃ -air mixtures through high- fidelity direct numerical simulations (DNS), considering the flame-in-a-channel configuration under forced turbulence at a wide range of turbulent conditions							
Turbulent flame speed statistics are discussed in terms of global fuel consumption rates and local flame displacement speed							

Propagation characteristics of premixed ammonia flames under different turbulent conditions

Ruslan Khamedov, Wonsik Song, Francisco Hernández Pérez, and Hong G. Im

Methodology

- \succ DNS of NH₃-air turbulent premixed flames in a turbulence-in-abox configuration are conducted by employing the KARFS code (KAUST Adaptive Reacting Flows Solver)
- \succ The following mixtures are considered:
 - \circ A1R-5 (rich ammonia): NH₃/air premixed flame $\varphi = 1.2, T = 500 \text{ K} (S_1 = 0.211 \text{ m/s}), Le = 1.12$
 - A1L (lean ammonia): NH3/air premixed flame $\varphi = 0.81$, T = 600 K (S_L = 0.211 m/s), Le = 0.90 Tab.1. Turbulent parameters

Case	<i>Ι_T/δ</i> [[-]	u′/S _L [-]	Re [-]	Da [-]	Ka [-]	<i>δ</i> լ/Δ <i>x</i> [-]	Grid [
A1R	1	10	72	0.1	85	12	1.7
A2	1	5	36	0.2	30	12	1.7
A3	3.5	15.2	386	0.2	85	12	16.6
A4	3.5	10	254	0.4	45	11	11.7
A5	3.5	7.6	192	0.5	30	11	11.6
A1L	1	10	56	0.1	75	12	0.69

Fig.2. Simulation conditions on the **Borghi-Peters diagram**

Fig.3. Temperature distribution for the case (a) A1R, (b) A2, (c) A3, (d) A4, (e) A5, and (f) A1L

