

جامعة الملك عيدالله للعلوم والتقنية King Abdullah University of

Clean Combustion Research Center

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING

Engines

Canada RCCRRC Mohammed Zaher, Amin Youseil, Mehran Dausetan, E Simon Lafrance, Hongsheng Guo, Murray Thomson. Mohammed Zaher, Amin Yousefi, Mehran Dadsetan, Brian Liko,

t t#	NH₃ energy fraction (%)	SODI (ºATDC)	EODI (°ATDC)	Diesel (kg/h)	NH₃ (kg/h)	Air (kg/h)	
	0	-13	-1.49	1.81	0	68.31	-
	20	-13	-2.33	1.52	0.86	66.71	
	40	-13	-3.73	1.21	1.88	65.18	_
							_

Soot Characterization in Ammonia-Diesel Dual Fuel

Impact of Ammonia on Engine Emissions and Exhaust Soot Morphology, Nanostructure, and Composition

Conclusions

• The addition of NH₃ reduced the rate of engine soot growth and inception. The increase in the engine soot graphitization with NH₃ addition indicated a reduction in the surface reactivity towards carbon bonding. • NH₃ was found to react with the soot surface at active sites creating C-N aromatic bonds and increasing the soot nitrogen content.

References

[1] ITF, Decarbonising Maritime Transport: Pathways to zero-carbon shipping by 2035, Int. Transp. Forum Policy Pap. (2018) 84. [2] A.J. Reiter, S.C. Kong, Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions, Energ. Fuel. 22 (2008) 2963–2971

[3] M.H. Zaher, C. Chu, M. Dadsetan, N.A. Eaves, M.J. Thomson, Experimental and numerical investigation of soot growth and inception in an ammonia-ethylene flame, Proc. Combust. Inst. 39 (2022).

• The results shows an increased risk of nitrogenated PAHs formation on soot surface.

Ongoing Work

- Engine soot modeling using SRM and KIVA. Investigation of NH₃-hydrocarbon flame and
- engine soot surface compounds using ToF-SIMS. • Investigation of the effect of NH₃ direct liquid injection on soot emissions.

Acknowledgements

