

Introduction

- of total emissions) to reach the KSA's net-zero emissions target for 2060
- Blue and grey hydrogen proton-exchange membrane (PEM) fuel cell vehicles offer a promising alternative solution for decarbonizing the transport sector.

LCA of PEM Fuel Cell Vehicles Powered by Grey and Blue Hydrogen: A Case Study in Saudi Arabia

Chengcheng Zhao, Leiliang Zheng Kobayashi, Awad Alquaity, S. Mani Sarathy

Comparative life cycle assessment

4. Jadwa Investment (2011). "Saudi Arabia's coming oil and fiscal challenge". Annual report.

KAUST Research Conference: Hydrogen-Based Mobility and Power

To conduct the impact assessment and scenario analysis

Results

Fluids

ADR

FCV

23%

storage

Batteries

Energy use: BE Bus > PEM FC Bus > ICE Bus; **GHG emissions**: BE Bus > PEM FC Bus > ICE Bus Components include PEM FC stack, PEM FC stack BOP, H₂ tank, and Battery management system ICE buses - Lead battery, BE buses – Li-ion battery, PEM buses – NiMH battery Overall, ICEV buses have the lowest energy use and emissions in the vehicle cycle.

- Calculation of energy use and emissions for the construction of fuel refueling station infrastructure