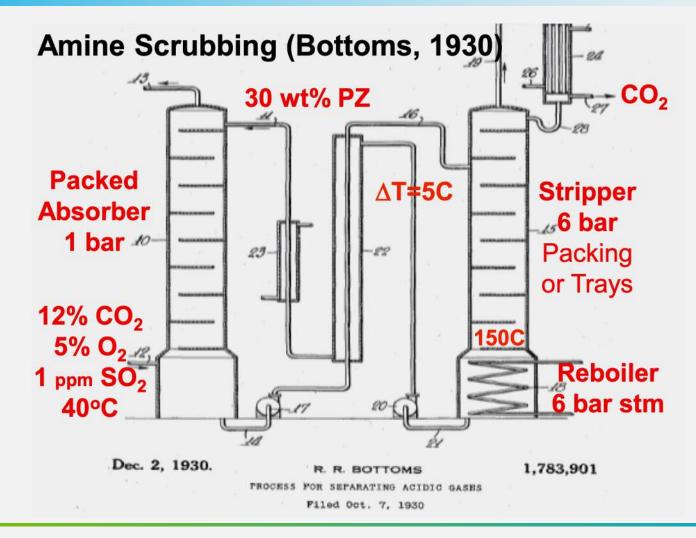


Amine Scrubbing for CO2 Capture

Dr. Mohammed Al-Juaied

Technology Strategy and Planning June 21, 2021


where energy is opportunity

Saudi Aramco: Confidential

- Amine scrubbing overview
- Advanced absorption
- Advanced regeneration systems
- Advanced solvent systems

Advanced solvent

Leading CO₂-capture technology is amine absorbent based

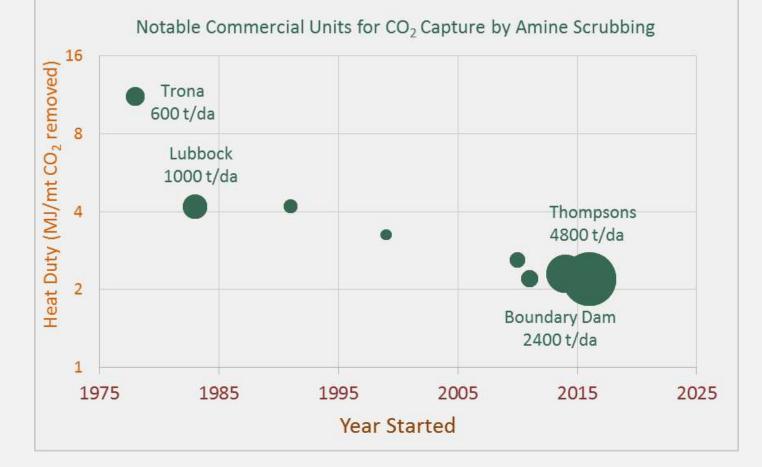
أرامكو السعودية soudi aramco

Commercial plants of amines for flue gas carbon capture

- More than 30 commercial plants have been constructed to capture CO2 from gas-fired flue gas
 - > 20 employing Fluor technology using 30% MEA
 - > 10 plants employing MHI technology using KS-1
- Only a few plants have been constructed to capture CO2 from coal-fired flue gas.
 - Four operating units employing Lummus technology using 20% MEA
 - Boundary Dam capture project employing Shell Cansolv technology
 - Petra Nova capture project employing MHI technology

Basic chemistry & rates

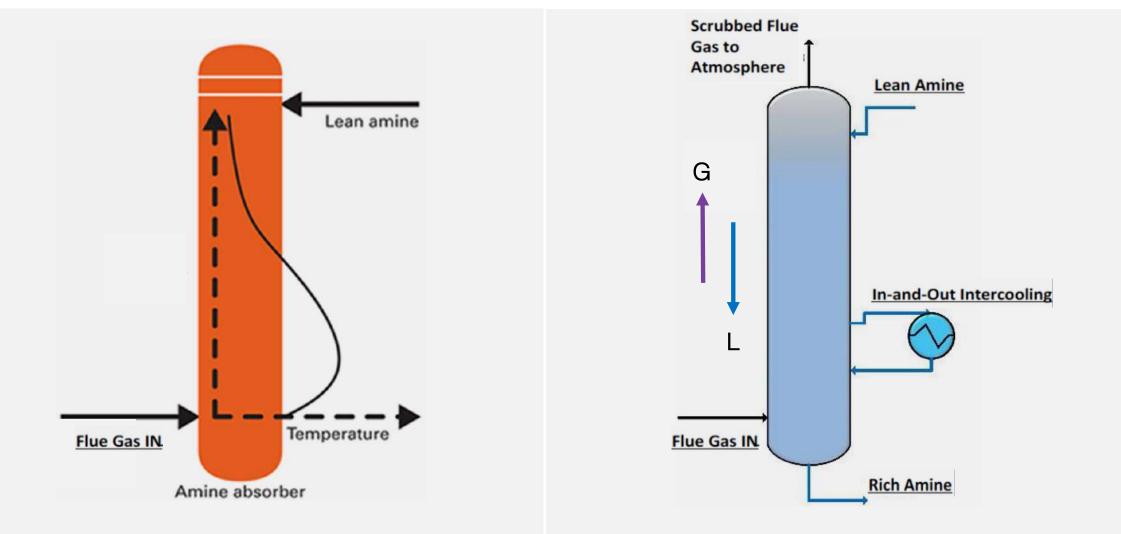
Class	Typical reaction	-H _{abs} (kJ/mol)	Kinetics
Carbonate	$CO_3^{=} + CO_2 + H_2O $ 2 HCO_3^{-}	40	Very slow
Tertiary Amine	$R_3N + CO_2 \bigoplus R_3NH^+ + HCO_3$	60	Slow
Hindered Amine	$AMP + CO_2 \bigoplus AMPH^+ + HCO_3$	60-70	Moderate
Secondary or Primary Amines	$2R_2NH + CO_2 \bigoplus R_2NHCOO^- + R_2NH_2^+$	70-80	Fast


These four classes of aqueous solvents differ in heat of CO_2 absorption, kinetics of CO_2 absorption, and intrinsic CO_2 stoichiometry

Applications for amine scrubbing

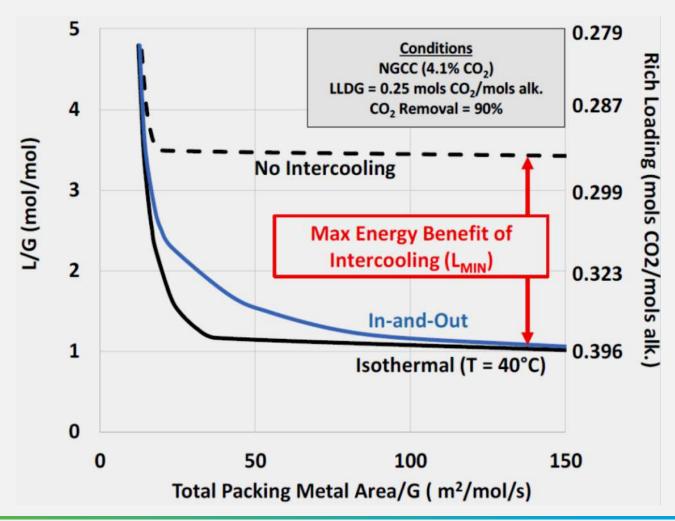
Application	Total P (bar)	P _{CO2 in} (bar)	P _{CO2 out} (bar)	Gas Volume (m³/hr)
Natural Gas	20-100	1-20	0.001 - 0.005	2 10 ⁴ - 5 .10 ⁵
Hydrogen	20-100	4-20	0.002 - 0.01	
LNG	30-100	0.5-4	0.002	1.5.10 ⁵
Coal flue gas	1	0.12	0.01	5.e10 ⁶
Simple cycle gas turbine	1	0.035	0.0035	5.e10 ⁶

Amine system energy performance continues to improve with time

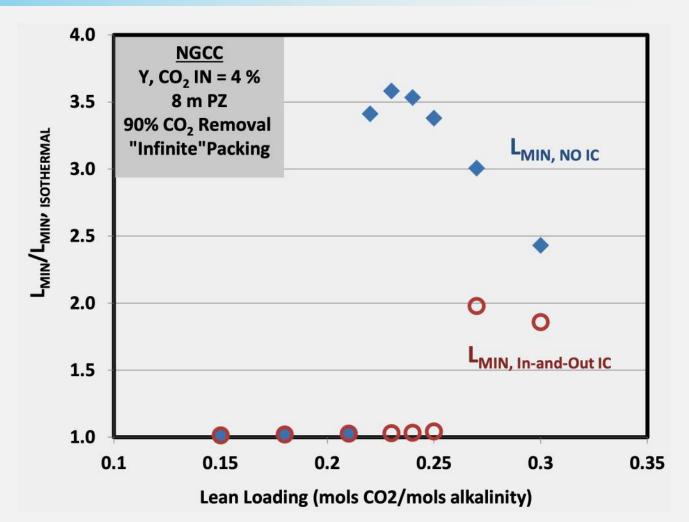

- At Lubbock in 1983 the reboiler duty decreased with the substitution of 30% MEA for 20% MEA.
- At the MHI plant in 1999, 30% MEA was replaced with KS-1
- At a newer MHI plant in 2009, additional energy savings from stripper process modifications
- Cansolv plant at Boundary Dam achieved energy savings with a new aqueous amine and the use of lean vapor compression at the stripper

Analogy to limestone slurry scrubbing

CaCO ₃	Event	Amine
1936	1st commercial plant	1980
1958	"Almost Insurmountable difficulties" (Bienstock et al. 1958) "Although technically feasible, it is an expensive method" (Booras and Smelzer, 1991)	1991
1960-75	Government funds research on advanced alternatives	1995-
1970-85	Government & EPRI fund test facilities	2010-
1968	60-250 MW prototypes	2014-
1977	500+ MW deployed per regulations	2025
2015	First choice dominates	???


Absorber intercooling in CO2 absorption

أرامكو السعودية soudi oromco


Effect of intercooling on packing area, 8 m PZ

- An isothermal absorber would require less packing and a lower liquid rate to achieve the same performance
- In many cases intercooling may be used to reduce the absorber packing cost and increase the rich loading

Effect of intercooling on liquid rate

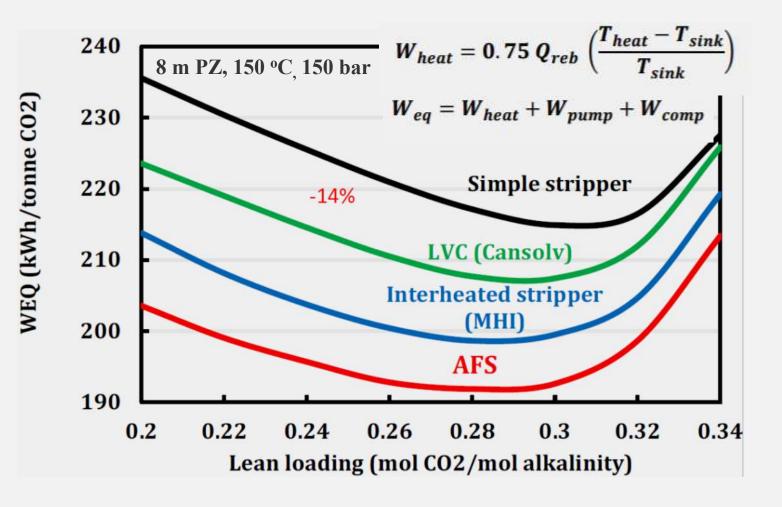
- At a lean loading of 0.21 the minimum flow is more than 3.5 times that of an isothermal absorber.
- A single stage of in-and-out intercooling reduces this effect to a factor of two at a greater lean loading of 0.26

Source: Sachde and Rochelle, 2014

أرامكو السعودية soudi aramco

Absorber design

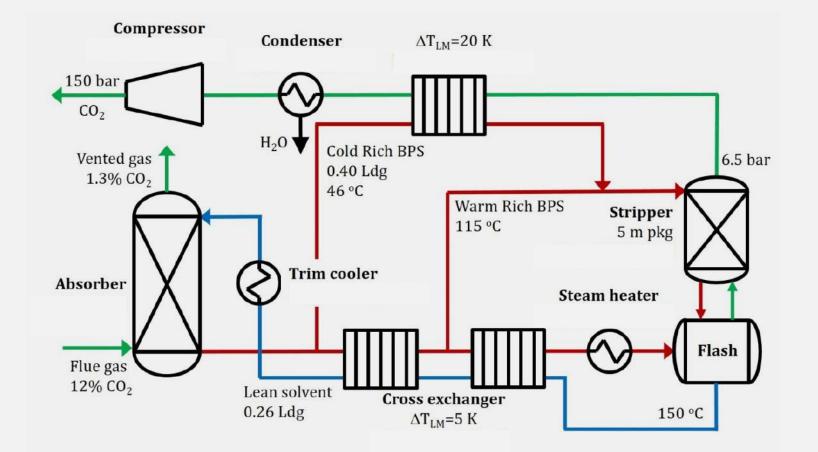
- The larger demonstrations use modern structured packing with larger corrugation angle
- The earliest absorbers in capture systems were round vessels
- Boundary Dam uses a rectangular absorber
- The MHI design at Thompsons uses a rectangular absorber
- Full-scale commercial designs will probably use a single rectangular absorber



أرامكو السعودية soudi aramco

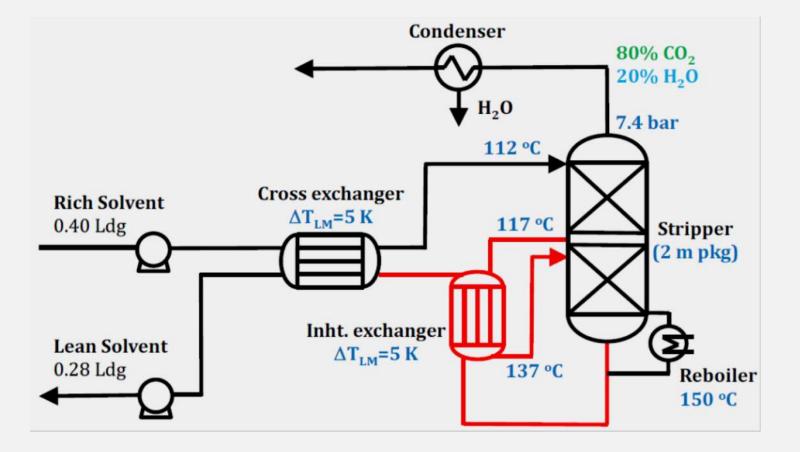
Source: G.T. Rochelle, 2016

Three stripper enhancements to that of simple stripping

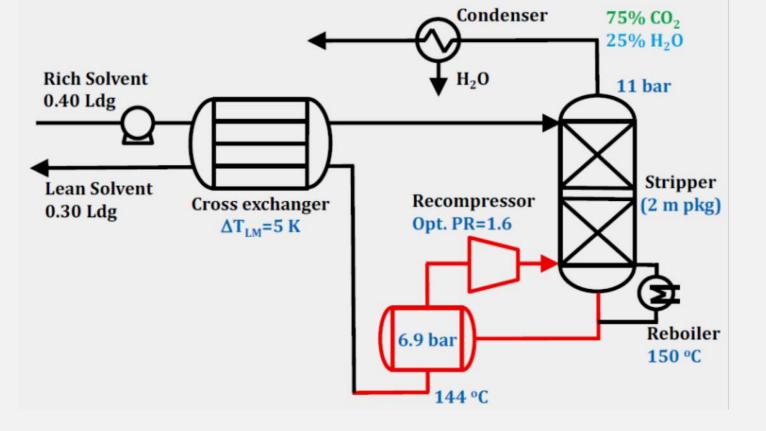

- Simple stripper loses efficiency because of water vapor that passes overhead and is condensed without heat recovery
- Large scale commercial applications will probably utilize these or similar configurations to enhance energy performance

Source: G.T. Rochelle, 2016

Advanced flash stripper (UT Austin)

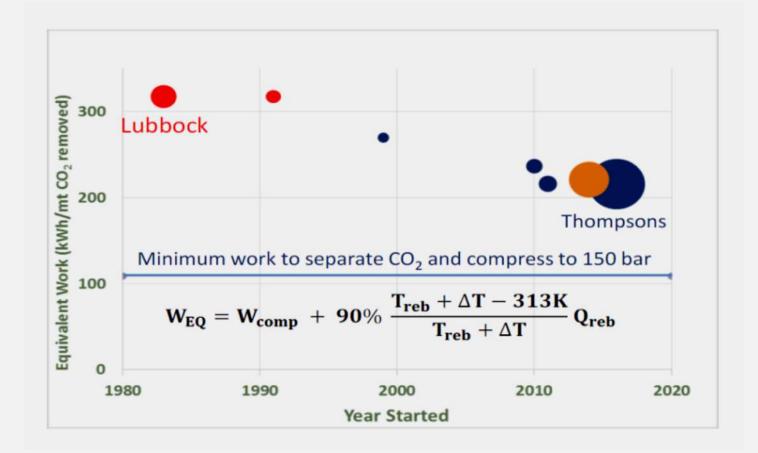

This configuration has been successfully tested in the pilot plant at the University of Texas

Source: Rochelle, 2014


Inter-heated stripper (MHI)

- An important part of the Energy Saving Process used by MHI in several commercial units
- The design has no optimization variables, so it is usually less efficient than the advanced flash stripper

Lean vapor compression (Cansolv)


- This configuration is included with the Saskpower Boundary Dam project
- It is not as flexible as the advanced flash stripper since the compressor needs to run at a maximum single-stage compression ratio (1.8 to ¬2.2)

Source: Rochelle, 2015

Electricity burden of commercial units

- The electricity burden with advanced amine scrubbing is approaching the minimum work (113 kWh/tonne CO2 removed)
- It is possible to expect ultimate requirement of 200 kWh/tonne CO2, with a thermodynamic efficiency of 56%.

Source: Rochelle, 2014

Energy criteria for amine selection

The primary basis for amine selection is built on four energy properties:

- 1. Capacity
- 2. CO2 absorption rate
- 3. Heat of CO2 Absorption
- **4.** T_{max} from thermal degradation

Absorbent management criteria

Other important amine properties include:

- Oxidative degradation
- Nitrosamine
- Amine volatility
- Amine aerosol emissions

- Molecular weight
- Amine cost and availability
- Amine corrosion

PZ is an excellent alternative to MEA

Property	7 m MEA	5 m PZ
Absorption rate ^a (10 ⁻⁷ mol/s-Pa-m ²)	4.3	11.3
Capacity ^b (mol CO ₂ /mol alkalinity)	0.62	0.76
T _{max} ^c (°C)	120	160
P _{max} (bar)	2.2	14
Heat of absorption ^d (kJ/mol)	71	64
Viscosity ^e (cP)	2.5	3
Solid precipitation ^f	No	Yes

a Average liquid side mass transfer rate between 0.5 and 5 kPa of P*CO2 at 40 $^\circ\text{C}$ (Dugas, 2009)

b Difference of lean and rich loading between 0.5 and 5 kPa of P*CO2 at 40 °C (Dugas, 2009)

c Corresponds to 2% amine loss per week (Davis, 2009; Freeman, 2011)

d Differential heat of absorption at 1.5 kPa of P*CO2 (Li, Voice, et al., 2013)

e Average between 0.5 and 5 kPa of P*CO2 at 40 °C (Amundsen et al., 2009; Freeman et al., 2011)

Source: G.T. Rochelle, 2016

PZ blends are comparable but with no issues of solid solubility

Property	5 m PZ	2 m PZ/ 7 m MDEA	2 m PZ/ 4 m AMP	2 m PZ/ 3 m HMPD
Absorption rate ^a	11.3	6.9	8.3	10.1
(10 ⁻⁷ mol/s-Pa-m ²)				
Capacity ^b	0.76	0.82	0.86	0.92
(mol CO ₂ /mol alkalinity)				
T _{max} ^c (°C)	160	120	128	149
P _{max} (bar)	14	1.4	3.4	8.8
Heat of absorption ^d (kJ/mol)	64	68	73	-
Viscosity ^e (cP)	3	9	5	-
Solid precipitation ^f	Yes	No	NO	NO

a Average liquid side mass transfer rate between 0.5 and 5 kPa of P*CO2 at 40 °C (Dugas, 2009)

b Difference of lean and rich loading between 0.5 and 5 kPa of P*CO2 at 40 °C (Dugas, 2009)

c Corresponds to 2% amine loss per week (Davis, 2009; Freeman, 2011)

d Differential heat of absorption at 1.5 kPa of P*CO2 (Li, Voice, et al., 2013)

e Average between 0.5 and 5 kPa of P*CO2 at 40 °C (Amundsen et al., 2009; Freeman et al., 2011)

Source: G.T. Rochelle, 2016

Conclusions

- Conventional amine scrubbing will be a dominant technology for postcombustion capture
- 2nd generation amine scrubbing provides improved energy performance, with electricity burden approaching 200 kWh/ton CO2 in coal-fired application
- 5 m PZ with absorber intercooling and the advanced flash stripper should serve as the baseline for future improvements in post-combustion capture

ارامكو السعودية معتمين السعودية

• Amine aerosol emissions and amine oxidation are not yet completely understood and managed