

Various Applications of SOFC- & SOE-Hybrid Processes for Power & Hydrogen Production in MENA

November 8, 2022

CONTENTS

1. About FCI

2. Technology for MENA

- Technology platforms
- Product development strategy
- Near-term technology for KSA

3. Products Development Status

- SOFC & MCFC technology and Products
- Near-term products roadmap for SOFC & SOE
- Development for ammonia applications
- Hybrid processes for hydrogen production and carbon capture

JV between KSA & Korea

June 2019 Korea-Saudi Extended Collaboration for **Hydrogen Economy**

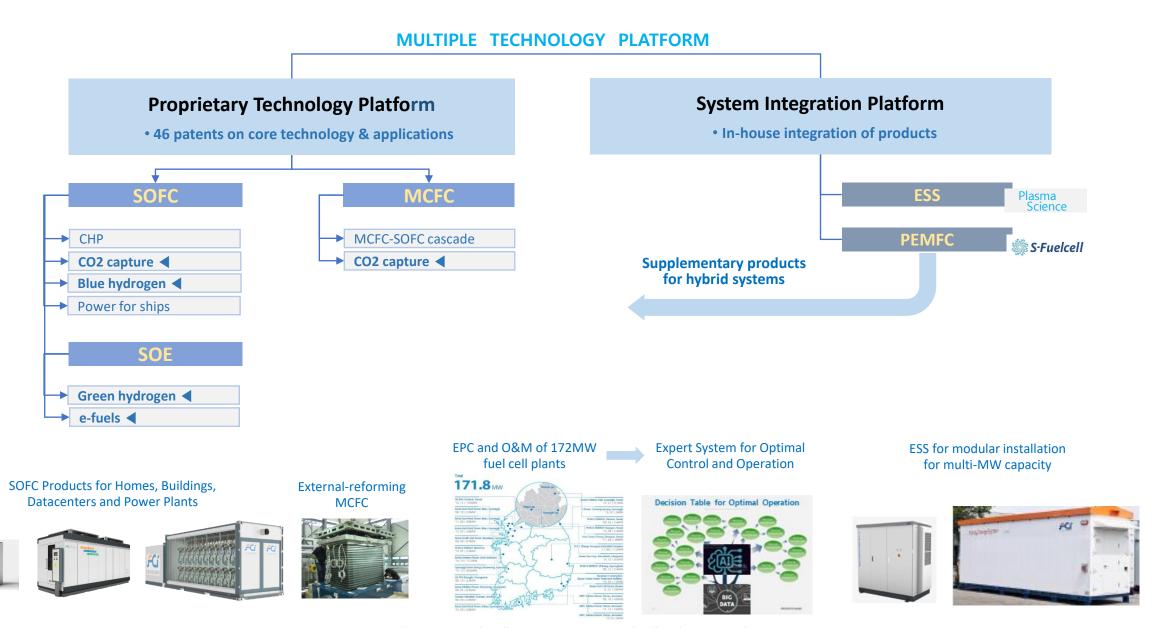
Nov. 2020 G-20 (Riyadh)/S-20 Fuel cell and electrolyzer Roadmap according to the Circular Carbon Economy

May 2021
S-OIL Investment on FCI for H2 business
development
(Aligned activity for Samsung-S-OIL MoU for
Hydrogen/ammonia business cooperation with
\$37bn)

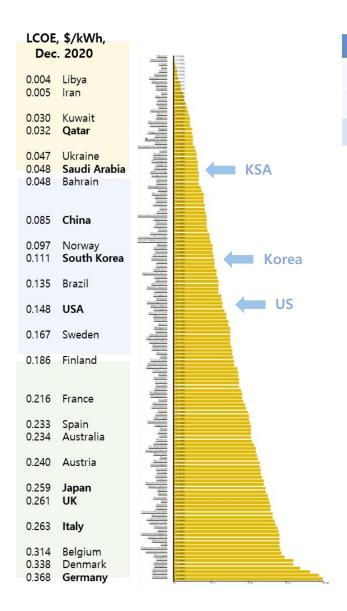
May 2021

MoA among Pohang City, Kyoungbuk Province, S-OIL and FCI for industrial promotion of SOFC/SOE in the Fuel Cell Cluster and Hydrogen City

Jan. 2022 MoU between Ministry of Energy, KSA and Taqnia Energy (PIF) for Hydrogen Business and e-fuel projects with FCI


JV between Saudi Arabia and Korea to provide hydrogen solutions for low carbon society

- KACST, Dune Energy and FCI established a JV, then further investment by S-OIL (Aramco), Tagnia Energy (PIF) & Samsung
- Pohang City and Kyoungbuk Province in Korea support FCI for mass production and pilot projects for SOFC & SOE products: Giga-Factory by 2027


Multiple Technology Platform

SOFC/SOE Development Strategy for MENA

	Germany	Italy	UK	Japan	France	US	Korea	China	KSA
(A) LCOE [cents/kWh]	36.8	26.3	26.1	25.9	21.6	14.8	11.1	8.5	4.8
(B) Gas Price [\$/MJ]	30.8	39.4	30.4	83.7	43.6	13.9	43.3	49.4	4.31
Index: (A)/(B) x 100	1.19	0.67	0.86	0.31	0.50	1.06	0.26	0.17	1.11

Note: Index for the opportunity for value proposition: Higher value indicates higher feasibility to achieve Grid Parity

MENA

Dependence on Fossil Fuels

- Energy roadmap for renewables
- Circular carbon economy

Conversion to Clean Energy

 CO2 capture & reutilization with min. addition of CAPEX

Primary Target Products

- Blue Hydrogen by SOFC hybrids
- Green Hydrogen by SOE (e-fuel)
- CO2 capture at ECBM & EOR

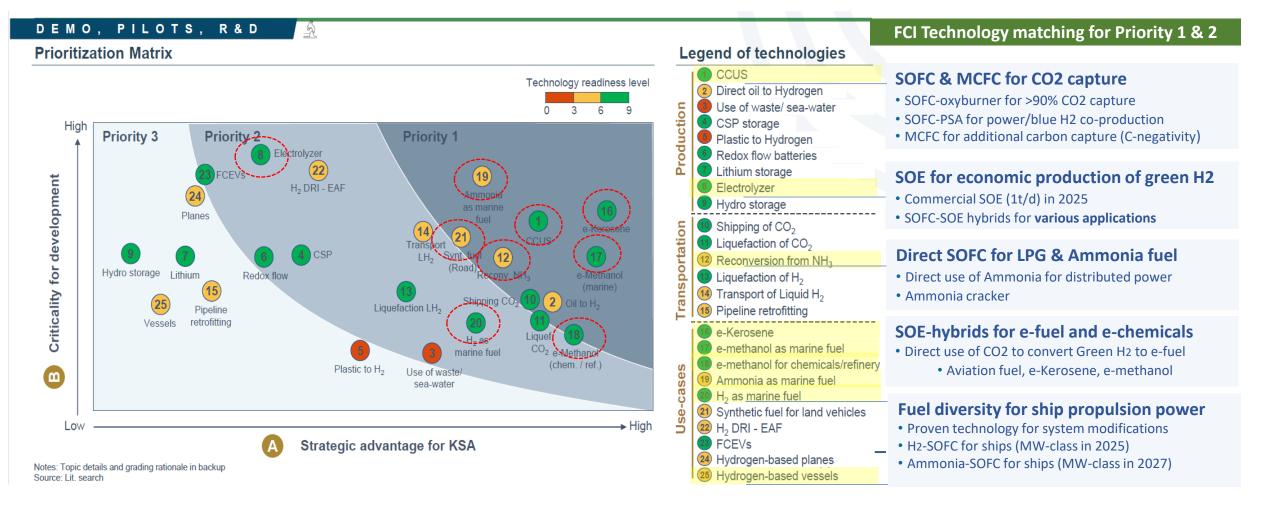
Energy Cost Structure

- Low energy cost
- High ratio of LCOE vs. gas price

Major Focus on Low CAPEX

- Localized production for <\$1,700/kW
- Hybridization for energy efficiency

Product Development Strategy


- Automated production technology
- Maximized system commonality (VE)
- Reuse of parts, device & equipment

Nov. 7 2022, Carbon Capture Journal: EU, €3bn for CO2 capture technology

R&D Priority in National Hydrogen Strategy in KSA

SOFC and SOE technologies cover many DEMO, PILOTS applications in the Priority 1 and 2 in the Saudi National Hydrogen Strategy.

Coordination with H₂ Business Roadmap of S-OIL & Aramco

Transport

Extraction

Application

(Jan 2022) Saudi Aramco-S-OIL MoU

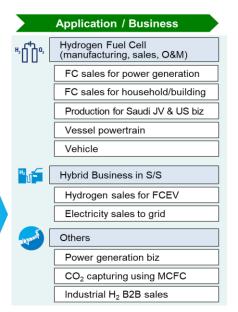
Feedstock

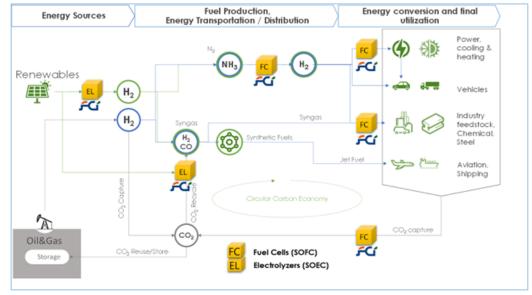
Production

HYDROGEN

S-OIL Vision

The most competitive, creative and clean energy & chemical company





MoU between Aramco & S-OIL for the R&D and business promotion for H2, ammonia and clean chemicals

- FCI's technical solutions on the wide range of value chains:
 - SOE/SOFC for Green and Blue H2 production
 - Ammonia propulsion ship for transportation
 - Ammonia cracker for H2 extraction
 - Direct-SOFC for **power generation** by ammonia and H₂

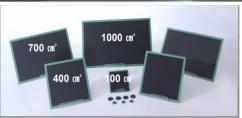
Proprietary SOFC/SOE Technology

Fuel Recycle

Blower

SOLID OXIDE FUEL CELL & ELECTROLYZER

Diverse applications: SOE, e-fuel, ships, carbon capture


POSCO Energy-RIST* technology transferred to FCI

- 16 patents & knowhow transferred
- \$200m R&D over 17 years for 10kW & 25kW stacks and 10kW products
- Giga-Factory (-2027) being planned in Pohang City, Korea
- RIST: Research Institute of Industrial Science and Technology, Subsidiary of POSCO

Advanced 10kW single stack by FCI

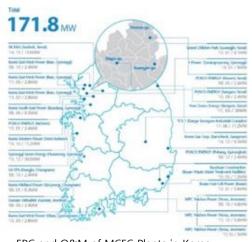
- Common stacks for SOFC and SOE
- Extended stack life for 5-7 years
- Improved cell design with sectioned electrodes for higher efficiency
- Operational logic for LPG and H2 fuels
- Modified cell & stack design for ammonia fuel (under validation)

Proprietary MCFC Technology

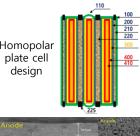
MOLTEN CARBONATE FUEL CELL (MCFC)

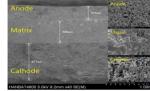
Additional CO2 capture for carbon negativity

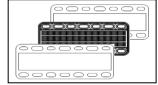
FCI possesses both of 'Internal-' and 'External-Reforming' MCFC technologies


- New generation cells and stacks for >51% efficiency
- Long R&D history from 1996
- Applicable to <u>hydrogen</u>, LNG and LPG fuel
- Applicable to ammonia fuel with cracker
- MW-scale BoP commonality to SOFC

Patented technology on MCFC-SOFC cascade


- Additional CO2 capture for carbon negativity
- High efficiency CHP & other applications
- Blue hydrogen production





SOFC Products

1.5kW for Homes

RevGEN™-1.5

- For homes and residential complex with LNG, LPG & Syngas as fuel
 - 55-60% efficiency
 - 98% availability & 20% modulation
 - Hot water supply

On sale

30kW for Buildings

RevGEN™-30/45

- For buildings, data-centers and renewable-hybrid power plants
 - 60% efficiency
 - 98% availability & 30% modulation
 - Hot water supply & hybrids w/ ESS

Order starts in 2023

240kW for Plants

RevGENTM-120/240

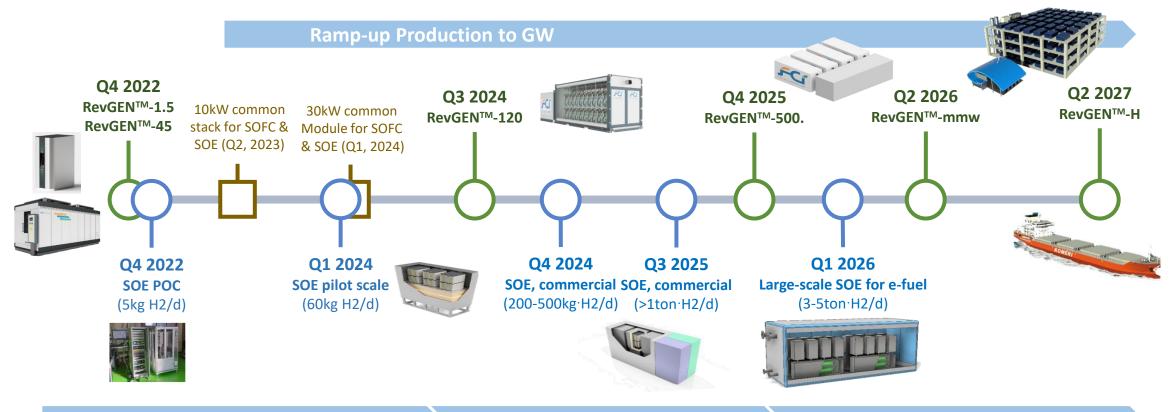
- For power plants, datacenters, ships and hydrolysis (SOE)
- Al-based control & power management
 - 60% efficiency
 - >99% availability & 30%+ modulation for datacenters
 - Hybrids w/ ESS, PV etc.
 - CO2 capture for blue hydrogen

Order starts in 2023

240kW for MENA

RevGENTM-120/240s

- For buildings, telecom, microgrids, military, etc.
- LPG, LNG, & NH3-mix for fuel
 - 55-60% efficiency
 - 99% availability & 30% modulation
 - ESS & PV interface
 - Design for MENA safety regulations and climate
 - Water recovery and recycle



Core Products Roadmap

Common use of 10kW stacks & 30kW modules for SOFC and SOE accelerates the cost reduction and the commercialization of large-scale products.

- Deployment of MW-scale SOFC from 2025-2026
- Large-scale SOE (>1ton H2) from 2026

SOE Commercialization for Various Applications

Development for pilot scale (commercial for H2 station) SOE under progress:

Business Focus: (1) Green H2 and e-fuel, (2) Nuclear plant-linked SOE, and (3) SOFC-SOE for CO2 capture

5kWe SOE, Lab Scale **DEVELOPMENT STAGE BUSINESS MODELS PROGRESS** 2022-2023 • POC project in progress with EPFL & Celectis (Swiss) Korea-Swiss Inno-Program (2022-2024)-Government **SOE**, Pilot Scale **R&D** Funds • Phase 1: 5kWe Module (3kg/H2/d) Pilot Scale for Hydrogen Station Phase 2: 100kWe Module (60kg H2/d) Hydrogen Stations (S-OIL, Daesung, etc.) with Subsidy in Q4, 2024-2025 • FCI patent: High efficiency and low cost for **SOFC-SOE for CO2 capture** coproduction of H2 & power while CO2 capture 2024-2025 **SOFC-SOE for Ship** • FCI patent: SOFC-SOE for ship applications **SOE, Small Commercial Product** • 360kWe system (200-500kg H2/d) • Base unit for modular scale-up • Internal Project: Techno-economical analysis on P2G and P2L processes for cement and **Green H2 & e-fuel Production** steel industry for Utility companies in Korea SOE for Nuclear Power Plants FCI participates in 'INL Project': KHNP/FCI/KIMM 2025-2026 250kW Nuclear Plant-linked SOE System

- Phase I (2023-2025): 250kW SOE

performance by 2026

- Phase II (2026-2027): System integration

• FCI's role is to provide 250kW SOE and to validate

Grid power for SOE

SOE

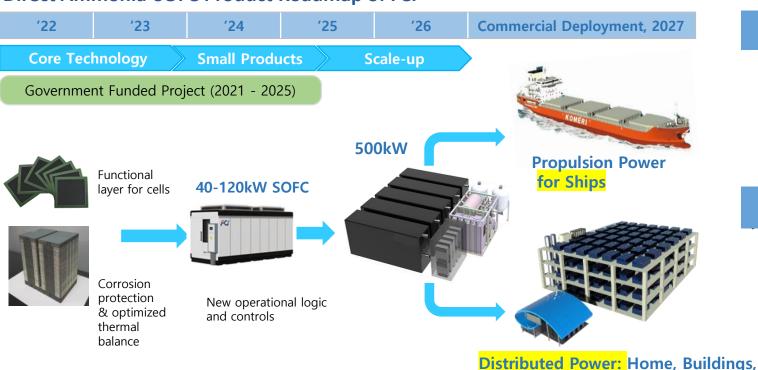
SOE @Nuclear Power Plant

SOE, Large Commercial Product

• 1.5MWe system (1-3ton H2/d)

• Integrated HotBoP for low cost

SOFC for Ammonia Applications



FCI develops core technologies for the ammonia use on SOFC.

- Applications according to the Korean Ammonia Roadmap (Nov. 2021)
- Design modification of stack and system completed while cell technology under further improvement

Net efficiency, % of energy of the first of

Direct Ammonia-SOFC Product Roadmap of FCI

Direct Ammonia-SOFC (2020-24)

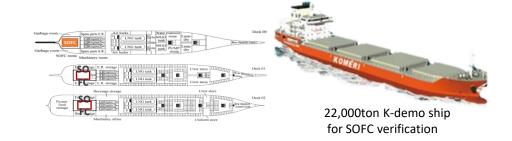
- Funding by Korean Government
- Core technology for NH3-fueled SOFC
- Coatings and catalysis for cells
- Modified fuel flow
- Include applications for ships

Commercial Ammonia Cracker (2022-23)

- 75ton green H2/y production
- Funding by Saudi Aramco and S-OIL
- Field operation in Korea (2022-2023)

[Additional Project]

- Engineering for combined thermal management
- Fuel cell applications with mixed fuel


Micro-grids, Power plant

SOFC Hybrids for LNG & Ammonia Ships

Leading the fuel cell application to ships

- Long experience in MCFC-ships
- Initiated SOFC-ships in 2020
- Completed 40kW SOFC hybrid for ships
- Extend to the use of ammonia and H2 for large ships

2020-2022	2023		2024		2025	2026		2027	2028	>	2029	
40kW SOFC	500kW SOFC for propulsion power					600kW LNG-SOFC 60kW Ammonia SOFC						
+ GE + ESS Hybrid for 10,000 Ton Ship		■ 120x kW LNG-fueled SOFC ■ 60x kW Ammonia-fueled SOFC			FC	Validati	on in th	e SEA	20MW Commercial Sh			S

(2020-2022) 40kW-SOFC validated under marine conditions

- Government fund: Consortium w/ KOMERI, KR, DSME
- Operational logic and PMS for SOFC-Engine-ESS Hybrid

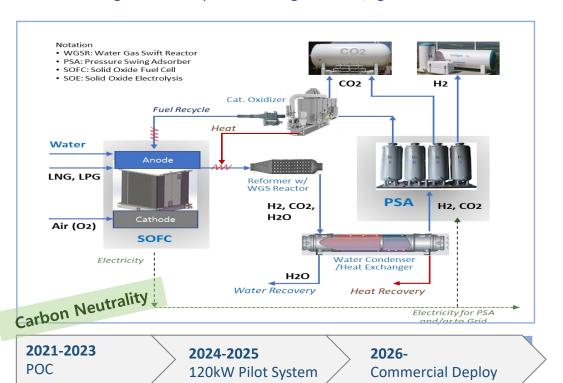
Completed!

(2023-2027) Extended project to MW-class SOFC-hybrid

- Government funding (\$35-45m) for 5 years
- SOFC-SOE-PEMFC-ESS-Engine hybrid for 22.000-ton ships

^{*} Korea Organization for Innovative Eco-friendly Ship Technology Development

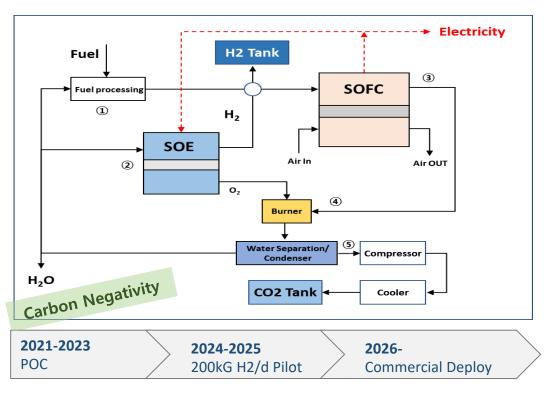
Economic Processes for H2 Production & Carbon Capture



Patented 'Net-Zero solution', which is effective and commercially viable in the near-term.

SOFC for Power & H2

Co-production of Power and Blue H2

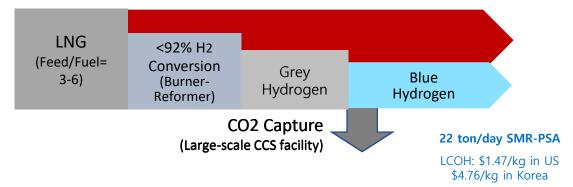

- Modulated production: Power <=> H2
- Higher efficiency vs. SMR: Target: <\$1.13/kg H2

SOFC-SOE Hybrids for Power & H2

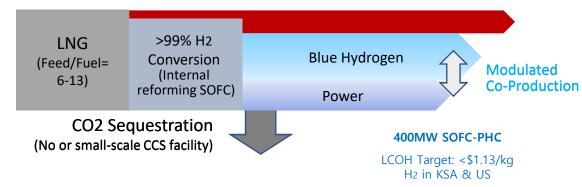
SOFC/SOE for Co-production of Power and **Green H2**

- O2 from SOE for Oxy-burner (Feasible for additional CO2 capture)
- Higher efficiency: 15% lower LCOH vs. SMR

Schematic Comparison: SOFC-PHC vs. SMR-PSA


SMR-PSA (Steam Methane Reforming)

- H2 conversion by reformer followed by H2 separation by PSA and carbon capture
 - Production of H2 only (@~840°C), external power required.
 - Large capture facility to capture >60% carbon (blue H2) from burner/combustor exhaust: >25-30% higher H2 cost increase


SOFC-PHC (Power-H2 Coproduction)

- H2 and electricity co-generation by SOFC followed by H2 CO2 separation by PSA plus compression of CO2
 - Modulated co-production of H2 and power (@~730°C)
 - Carbon capture from PSA for >90% removal of CO2
 - Island operation or on-site operation with LNG/LPG/Oil
 - Diversification with oxy-combustor, etc. for 100% or additional carbon capture

Energy Loss: <u>Burner/Reformer</u> + PSA + System + <u>CO2 Capture</u>

Energy Loss: PSA + System

✓ Economical advantages of SOFC-PHC stem from:

- (1) Higher energy efficiency from 99% H2 conversion by internal reaction heat
- (2) No additional or minimal cost for >90% CO2 capture

Summary

FCI, a JV between Saudi & Korea, provides innovative energy solutions for carbon neutrality & negativity by utilizing fuel cells and electrolyzer technology.

- Competence in hybrid process design
- Global R&D consortium extending to MENA
- Focus on optimized products for MENA

FCI possesses multiple fuel cell technologies such as SOFC & MCFC and is specialized in hybrid processes for MENA.

- Co-production of power and Blue/Green hydrogen
- Various applications such as ships, carbon capture, ammonia fuel etc.
- MCFC is optional depending on the market needs

FCI started "GIGA-Factory" projects in Korea and Saudi Arabia for the mass production of SOFC and SOE.

Contact: Tae-Won Lee, CEO of FCI

mobile: 82-10-2041-8430

emails: twlee@globalfci.com, twlee@globalfci.com,