Hydrogen via Reforming & Gasification

Joe Powell (Joseph B. Powell, PhD)

NAE, Fellow AIChE, ChemePD LLC
Retired Shell Chief Scientist – Chemical Engineering
Former Chair: U.S. DOE Hydrogen Technical Advisory Committee
U of Houston Energy Transition Institute
Stanford Energy Advisor; Advisor USBCSD.org

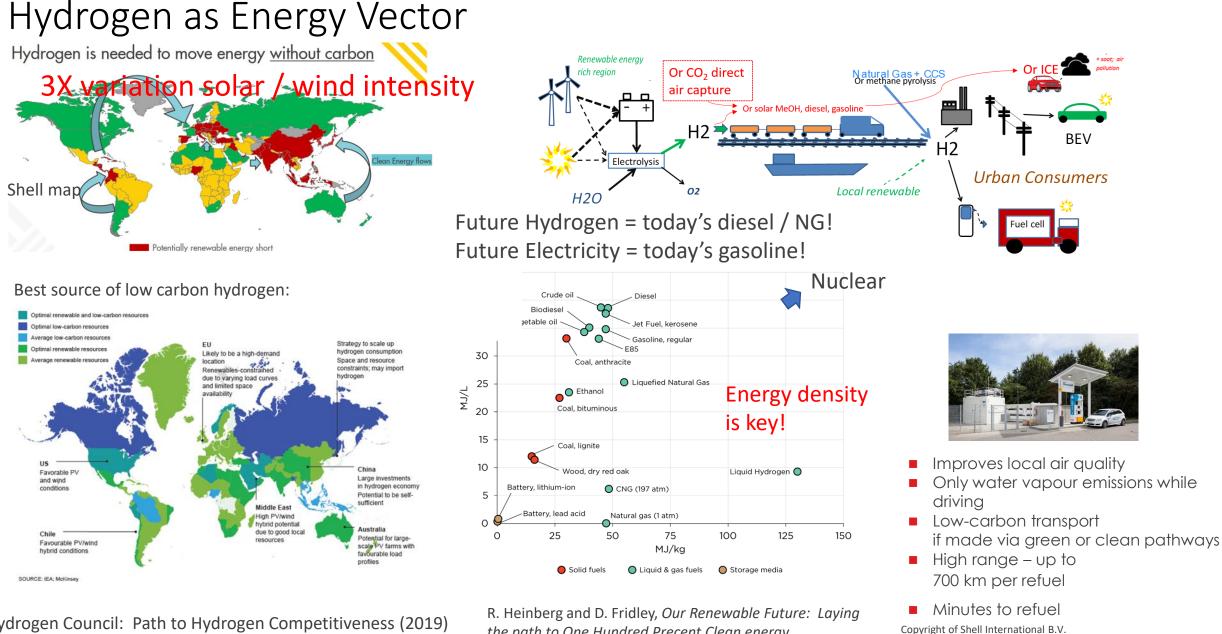
KAUST Hydrogen Panel

13 September 2022

 Bett
 Wasserstoff

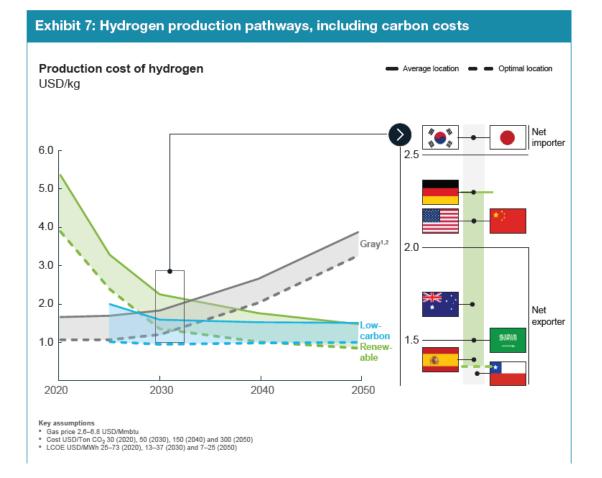
 Per
 ct Wash

 Wasserstoff
 Neuen

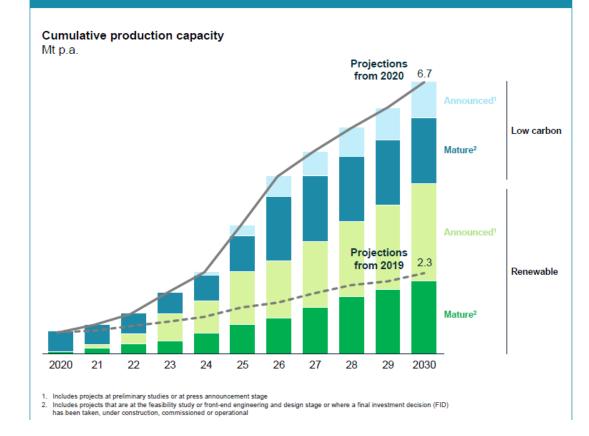

 Wasserstoff
 Neuen

Disclaimer:

Any cost information is approximate and derived from open literature and data. Do not take any observations as investment advice.

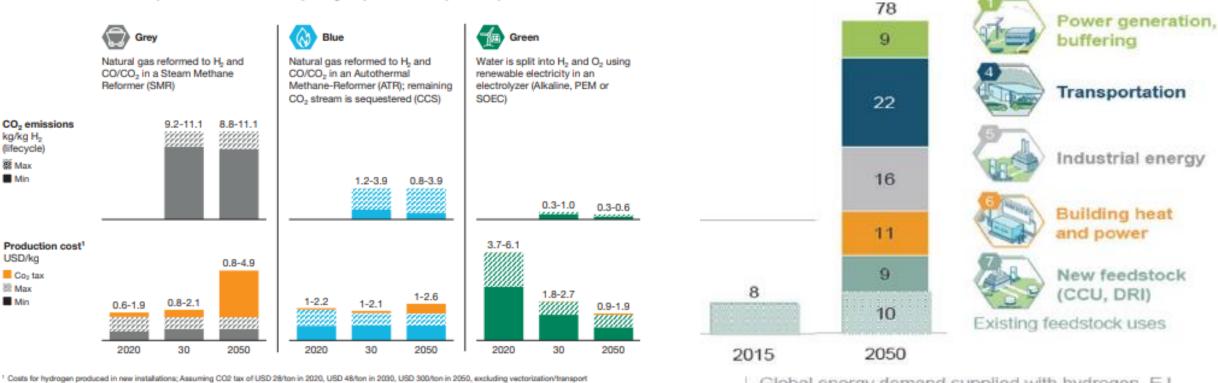


Shell FOUNDING PARTNER



the path to One Hundred Precent Clean energy.

Blue vs. Grey vs Green: McKinsey / H2 Council


Exhibit 5: Announced clean hydrogen capacity through 2030

 Hydrogen Council / McKinsey: Hydrogen Insights A perspective on hydrogen investment, market development and cost competitiveness February 2021 <u>https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021.pdf</u>

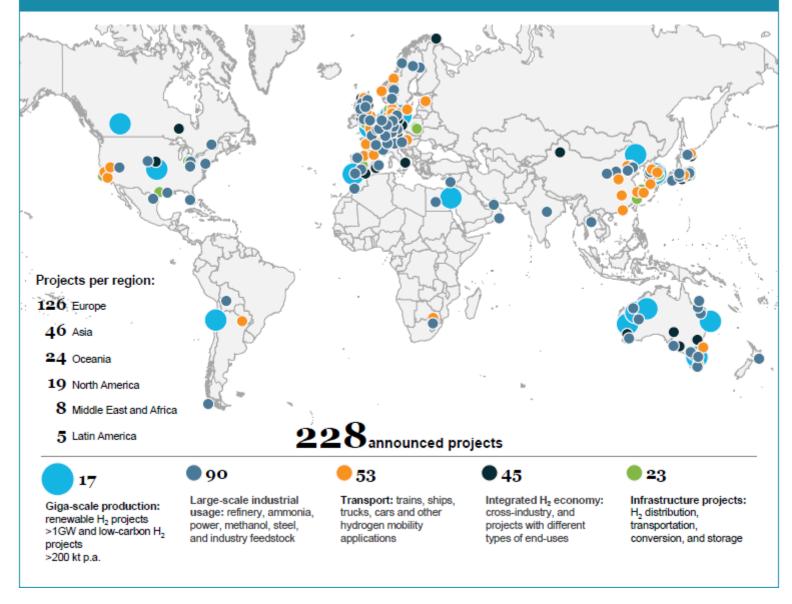
Hydrogen cost and demand

Exhibit 1: Core assumptions for selected hydrogen production pathways

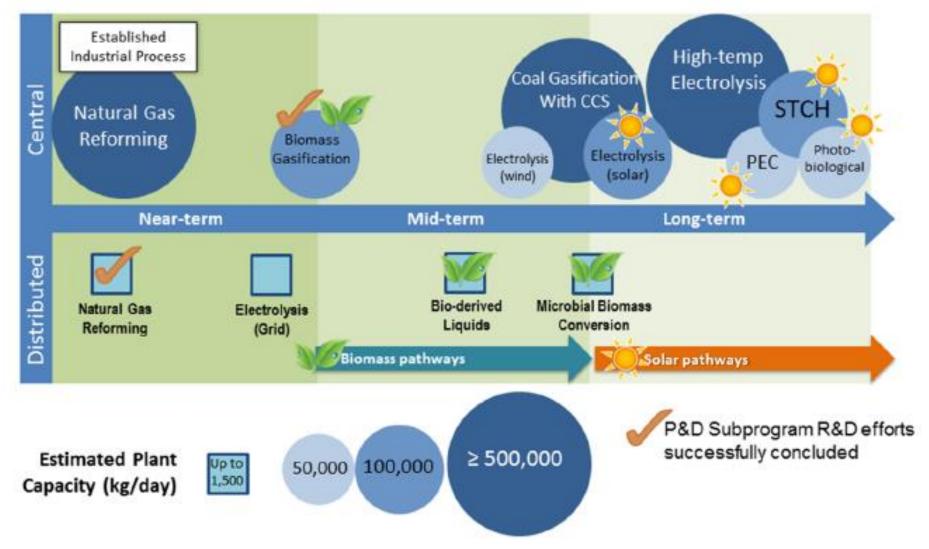
Source: LBST; Hydrogen Council - Path to Cost Competitiveness; McKinsey

Global energy demand supplied with hydrogen, EJ

Global Hydrogen Demand Potential (EJ)


Hydrogen council: Scaling up reports 2017 and 2019; <u>https://hydrogencouncil.com/wp-content/uploads/2019/02/HC_Influencers_FINAL.pdf</u>

Where is hydrogen economy emerging?


- Far east (Japan, China, Korea with sourcing from Australia); Europe
- Policy incentives important

Hydrogen Council / McKinsey % Co. (Feb 2021) Hydrogen Insights on hydrogen investment, market development and cost competitiveness <u>https://hydrogencouncil.com/wp-</u> <u>content/uploads/2021/02/Hydrogen-Insights-</u> <u>2021-Report.pdf</u>

Exhibit 2: Global hydrogen projects across the value chain

Hydrogen production options

- <u>https://www.eia.gov/energyexplained/hydrogen/</u>; NACFE: Guidance on Hydrogen Fuel Vell Tractors, 121620 (2020)
- Mark Ruth et al., The Technical and Economic Potential of the H2@Scale Concept within the United States, NREL Report (2020). https://www.nrel.gov/docs/fy21osti/77610.pdf

Reactions to form Hydrogen

How many H2 formed per carbon fed? How much energy required?

Reaction	Stoichiometry	Energy Required*	Heat?
Electrolysis	$H_2O \rightarrow H_2 + \frac{1}{2}O_2$	+285.8 kJ/mole-H ₂	Add energy + heat
Methane Pyrolysis	$CH_4 \rightarrow C_{(s)} + 2H_2$	+ 37.45 kJ/mole-H ₂	Add heat
SMR	$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$	+ 41.25 kJ/mol-H ₂	Add heat
POX	$CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO_2$	- 159.3 kJ/mol-H ₂	Export heat

* For heat (enthalpy) of reaction (only)

→ Addition energy (methane) required for heat NIST / Engineering Toolbox thermodynamic data

Do not look only at reaction stoichiometry to assess total energy requirement or carbon footprint!

Techno - Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS

IEA GREENHOUSE GAS R&D PROGRAMME

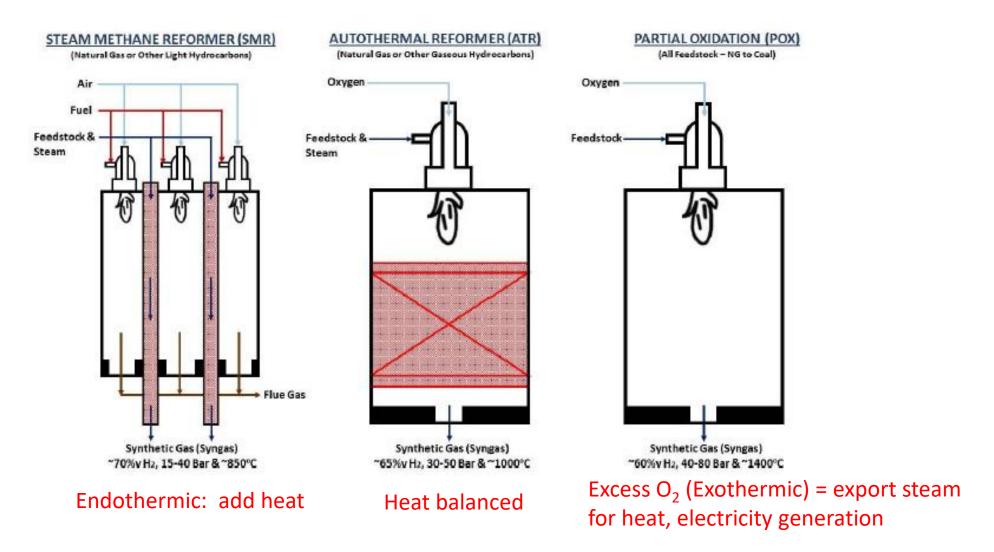
Key References

The Technical and Economic Potential of the H2@Scale Concept within the United States

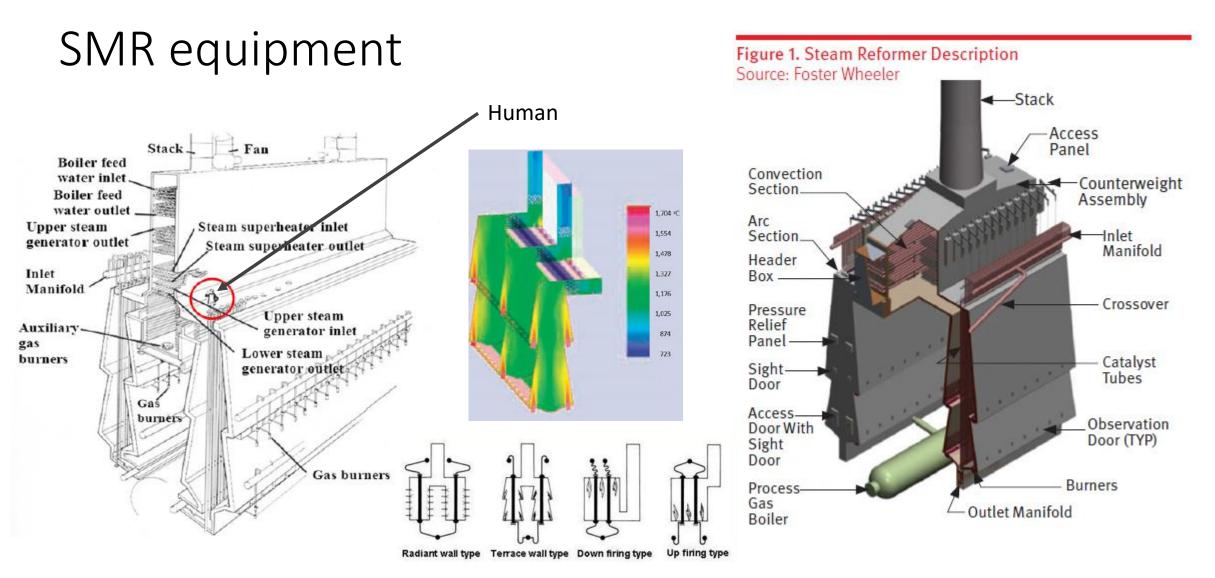
Mark F. Ruth,¹ Paige Jadun,¹ Nicholas Gilroy,¹ Elizabeth Connelly,¹ Richard Boardman,² A.J. Simon,³ Amgad Elgowainy,⁴ and Jarett Zuboy⁵

National Renewable Energy Laboratory
 Idaho National Laboratory
 Lawrence Livermore National Laboratory
 Argonne National Laboratory
 Independent Contractor

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Technical Report NREL/TP-6A20-77610 October 2020


This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308


SMR BASED H2 PLANT WITH CCS, IEAGHG Technical Report 2017-TR3 https://ieaghg.org/publications/technical-reports

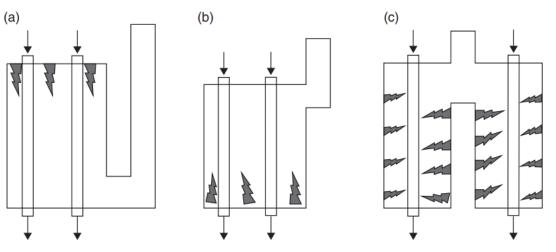
Mark Ruth et al., *The Technical and Economic Potential of the H2@Scale Concept within the United States*, NREL Report (2020). https://www.nrel.gov/docs/fy21osti/77610.pdf

Hydrogen formation from Natural Gas

IEAGHG, Reference data and supporting literature Reviews for SMR Based Hydrogen Production with CCS, March 2017.

- Luigi Bressan and Chris Davis, SMR Driving Down Cost of Production, <u>www.gasworld.com/specialfeatures</u>, September, 2014. Terrace wall reformer
- W. Quon, PhD Thesis, U. of Houston (2012)

SMR reactor details


Table 11.3 Furnace construction data

Number of tubes	897
Furnace dimensions	$21.8\times35.5\times13.7~m$
Number of burners	204

Source: Data from Elnashaie and Elshishini, 1993.

Length of the reformer tube
Inside diameter
Outside diameter
NG inlet flowrate
Process gas inlet temperature
Process gas pressure

12–14 m 0.09–0.11 m 0.11–0.13 m 3–8 kmol/h 673–800 K 25–40 bar

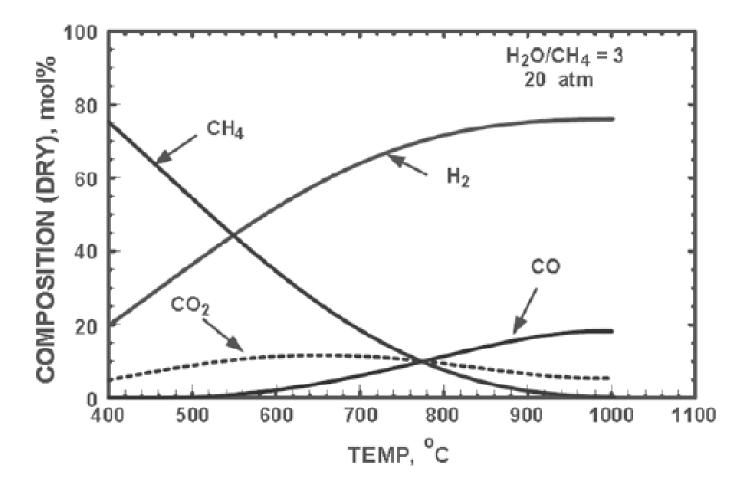

11.2 Furnace configurations: (a) top-fired; (b) bottom-fired; (c) side-fired.

Table 11.4 Typical gas composition at the outlet of steam reforming

CH₄	2–6%	
H ₂ O	35-55%	
H_2	30-46%	
CO	3–9%	
CO ₂	6–8%	

• V. Piemonte, ... A. Basile, Hydrogen production using inorganic membrane reactors in <u>Advances in Hydrogen Production, Storage and Distribution</u>, Elsevier, 2014

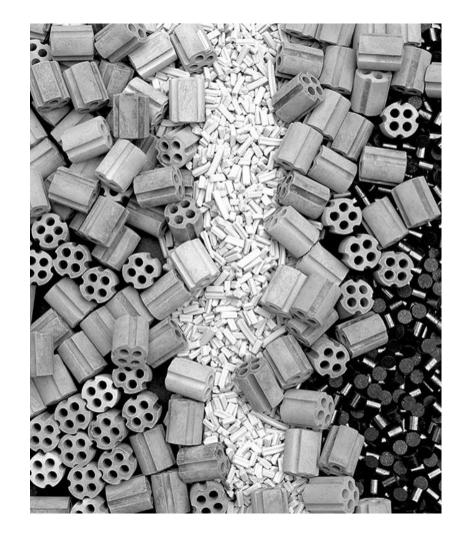
SMR Equilibria

High temperature or novel reactor with separation needed!

W. Quon, U. of Houston PhD Thesis (2012)

SMR and WGS catalysts

Nickel catalysts used for SMR.


 \rightarrow Max. 20% loading

High Temperature WGS (400 C) stage 1

ightarrow Iron oxide / chromium

Low Temperature WGS (200 C) stage 2

 \rightarrow Copper

W. Quon, U. of Houston PhD Thesis (2012)

M. Twigg, Catalyst Handbook (2018)

Johnson-Matthey Generic catalyst picture from www.matthey.com

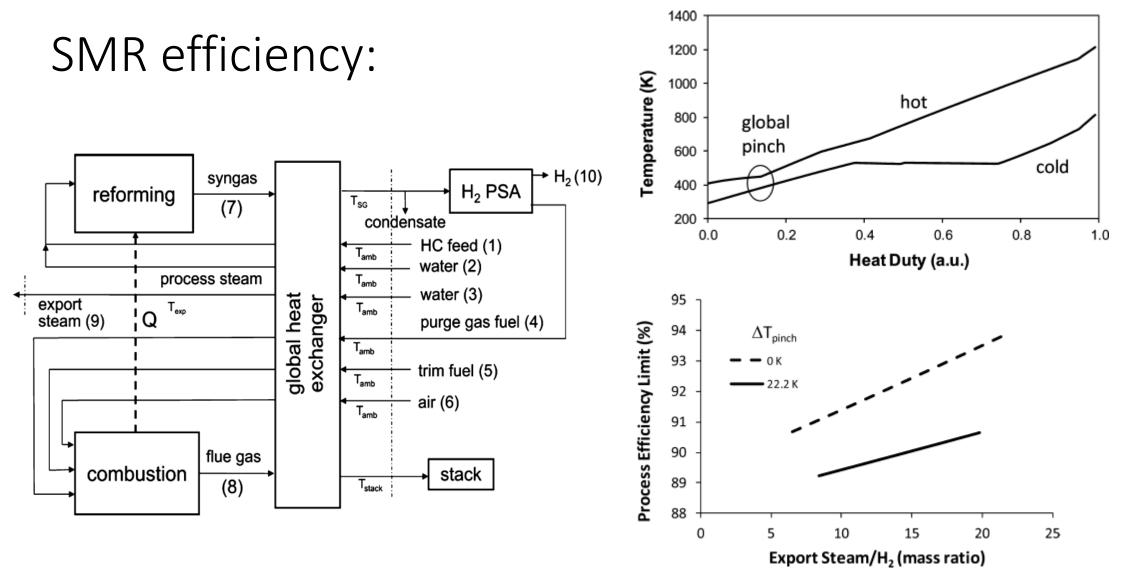
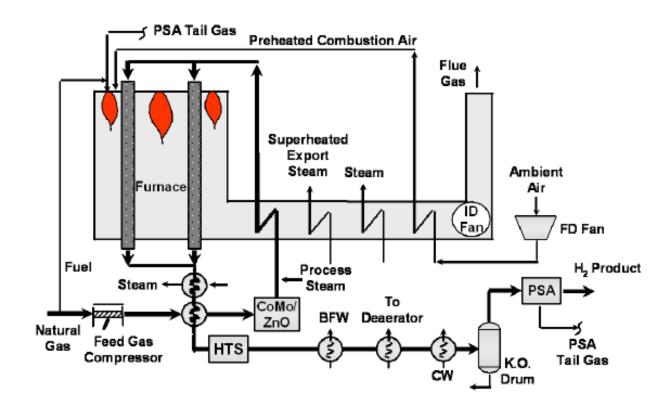

SMR – world's largest plants

Table 3 – World's largest single train SMR hydrogen plants							
Owner	Plant Name	Location	Capacity [Nm ³ /h]	SMR Licensor			
Tuapse Refinery	U-34 *	Sao Francisco do Conde, Brasil	240000	Technip			
Kuwait National Petroleum Co Ksc	CFP2*	Mina Abdulla, Kuwait	203500 (per train, 3 trains)	Haldor Topsøe			
JSC Bashneft NOVOIL	HPU	Ufa, Russia	165000	Amec Foster Wheeler			
TUPRAS	HPU*	Izmit, Turkey	160000	Technip			
Abu Dhabi Oil Refining Company (Tarter)	Hydrogen 2 UNIT 1300	Ruwais, U.A.E	151000	Haldor Topsøe			

X 0.725 = tonnes H2/yr


H2tools.org: normal m3 = 0.0899 kg 24*365 = 9240 h/yr (100% stream) Nm3/hr = 0.83 tonnes/yr

SMR BASED H2 PLANT WITH CCS, IEAGHG Technical Report 2017-TR3 https://ieaghg.org/publications/technical-reports

• X. D. Peng, Analysis of the Thermal Efficiency Limit of the Steam Methane Reforming Process, Ind. Eng. Chem. Res. 2012, 51, 16385–16392

SMR- minimum steam

• <u>www.Praxair.com</u> (2010)

	Table 1 Hydrogen Plant Subsystems					
Typical Operating	1. Process gas outlet temperature: 1400°F to 1700°F.					
Conditions	2. Pressure: 200 psig to 450 psig.					
Equipment	1. Catalyst size: 5/8-in. x 5/8-in. rings, Ni-based.					
	2. Reformer tubes: 4-in. to 5-in. diameter by 40 ft to 45 ft long.					
	Reformer tube life: 10 years.					
	4. Furnace type: Round (can) or box.					
	High Temperature Shift					
Function	Convert carbon monoxide to hydrogen.					
Reaction	Water gas shift: CO + $H_2O \rightarrow CO_2 + H_2 + Heat$					
	1. Mildly exothermic reaction.					
	2. Reaction favored by mild temperature and excess steam.					
	3. Converts about 70 to 75 percent of carbon monoxide.					
Catalyst	Iron/chrome					
Catalyst Life	5 to 7 years					
Typical Operating Temperature	650°F to 700°F					
Typical Temperature Rise	125°F					
	H2 PSA					
Function	Purifies hydrogen-rich gas (purity hydrogen product >99.99 percent					
Adsorbents	Molecular sieve, activated carbon, alumina, and silica gel.					
Typical Operating	1. Feed pressure: 200 to 900 psig.					
Conditions	2. Feed H ₂ composition: 50 to 95 percent.					
	3. Tail gas pressure: 5 to 70 psig.					
	4. H ₂ recovery: 65 to 90 percent.					
Typical Operating	1. Adsorber vessels: 4 to 12.					
Equipment	2. Surge tank: 1 to 2 (12 to 13 ft diameter).					
	3. Valve skid and controls.					

H2 Cost Green & Clean

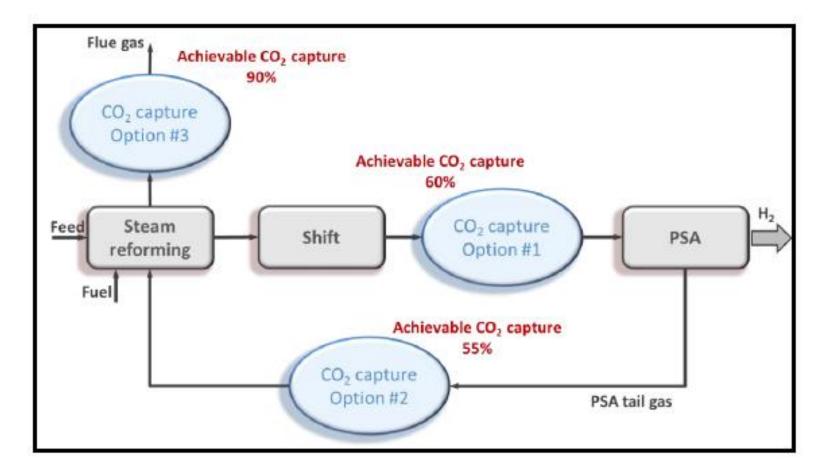
•B. Parkinson, P. Balcombe, J.F. Speirs, A.D. Hawkes, K. Hellgardt, Levelized cost of CO 2 mitigation from hydrogen production routes, Energy Environ. Sci. 12 (2019) 19–40. <u>https://doi.org/10.1039/C8EE02079E</u>. *Sustainable Gas Institute, Imperial College London*

		ture estim ⁻¹ H ₂)	ates		estimates $^{-1}$ H ₂)		100% ∝ 90%	Cu-Cl Cycl S-I Cycle -	
Technology	Low	Central	High	Low	Central	High	0 SMR 80%	\$	Electrolysis Wind
SMR	1.03	1.26	2.16	1.03	1.26	2.16	t 70%	Ideal Candidate	Biomass Gasification Electrolysis Solar
SMR w. CCS ^a	1.22	1.88	2.81	1.93	2.09	2.26	ative 20%	Technology	Coal (CCS)
Coal	0.96	1.38	1.88	0.96	1.38	1.88	ag 60%		
Coal w. CCS ^b	1.4	2.17	3.6	2.24	2.46	2.68	SU 50%		
CH ₄ pyrolysis ^c	1.03	1.75	2.45	1.36	1.76	1.79	ctio	1	
Biomass	1.48	2.24	3.00	1.48	2.24	3.00	p 40%		
Biomass w. CCS ^d		2.27		3.15	3.37	3.6	a 30%	Levelized Cost of Carbon Mitigation (\$ t ⁻¹ CO ₂)	SMR (CCS)
Electrolysis wind ^e	3.56	5.24	10.82	4.61	7.86	10.01	us		
Electrolysis solar ^e	3.34	8.87	17.3	7.1	12.00	14.87	.0 20%	1 1	
Electrolysis nuclear ^e	3.29	4.63	6.01	4.99	6.79	8.21	SE 10%	LCCM = 50 LCCM = 100	LCCM = 500
S–I cycle	1.47	1.81	2.71	1.47	1.81	2.71	ш ¹⁰ /		
Cu–Cl cycle	1.47	2.13	2.7	1.47	2.13	2.7	0%	111111111111111111111111111111111111111	
								1% 10%	100% 1000%

Cost Increase Relative to SMR

Fig. 6 Proportional reduction in emissions against percentage cost increase relative to SMR. The variability of emissions and cost parameters shown reflect the full ranges of emissions and costs values used in this study and presented in Table 5. Biomass with CCS, emissions reduction of 213% and a cost increase of 168%, has been omitted from the chart as an outlier to allow focus on other technologies.

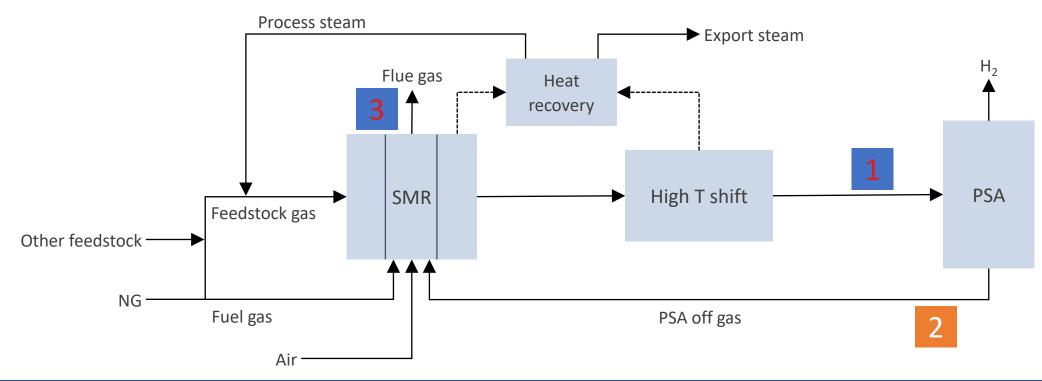
Our "Low–Central–High" estimates use ^a an updated SMR CCS cost of \$96.15 t⁻¹ CO₂ $\pm 20\%$ for a 90% point source capture scenario from the literature median hydrogen production cost of \$1.26 kg⁻¹ H₂, ^b an updated coal gasification CCS cost of \$65.92 t⁻¹ CO₂ $\pm 20\%$ for a 90% point source capture scenario from the literature average cost of \$1.38 kg⁻¹ H₂, ^c adjusted carbon sale price from \$-10 to 150 t⁻¹ carbon product for \$4 GJ⁻¹ natural gas cost, ^d an updated biomass gasification CCS cost of \$65.92 t⁻¹ CO₂ $\pm 20\%$ for a 90% point source capture scenario from the literature average cost of \$65.92 t⁻¹ CO₂ $\pm 20\%$ for a 90% point source capture scenario from the literature average cost of \$65.92 t⁻¹ CO₂ $\pm 20\%$ for a 90% point source capture scenario from the literature reference cost of \$2.27 kg⁻¹ H₂, and ^c the technology specific LCOE and capital cost bounds shown in Table 2 and economic assumptions shown in Tables S9–S12 (ESI).


Carbon footprint of hydrogen manufacture

	Literature estimates (kg CO ₂ e kg ⁻¹ H ₂)			Our estimates (kg CO ₂ e kg ⁻¹ H ₂)		
Technology	Low	Central	High	Low	Central	High
SMR ^a	10.72	12.4	15.86	10.09	13.24	17.21
SMR w. CCS ^a	3.1	4.3	5.92	2.97	5.61	9.16
Coal ^b	14.4	19.14	25.31	$14.72/16.9^{e}$	$19.78/23.85^{e}$	$26.09/30.9^{e}$
Coal w. CCS ^b	0.78	1.8	5.2	$1.09/3.27^{e}$	$2.11/6.2^{e}$	$5.52/10.35^{e}$
CH ₄ pyrolysis ^a	1.9	3.72	5.54	4.2	6.1	9.14
Biomass	0.31	2.6	8.63	0.31	2.6	8.63
Biomass w. CCS ^c		-14.58		-11.66	-14.58	-17.50
Electrolysis wind ^d	0.85	1.34	2.2	0.52	0.88	1.14
Electrolysis solar ^d	1.99	4.47	7.1	1.32	2.21	2.5
Electrolysis nuclear ^d	0.47	1.65	2.13	0.47	0.76	0.96
S-I cycle	0.41	1.2	2.2	0.41	1.2	2.2
Cu–Cl cycle	0.7	1.08	1.8	0.7	1.08	1.8

Our "Low-Central-High" estimates utilize ^a supply chain contributions of 0.6–1.4% (central 0.9%) fugitive methane emissions and 8.2–14.8 g CO₂ MJ^{-1} HHV (central 10 g CO₂ MJ^{-1} HHV) to the full emissions range presented in the literature, ^b the IPCC Tier 1 emissions ranges of 10–25 m³ CH₄ t⁻¹ for underground coal and 0.32–0.77 kg CO₂e kg⁻¹ H₂ (central estimate of 0.45 kg CO₂e kg⁻¹ H₂) for surface mined coal supply chain contributions to the full emissions range presented in the literature, ^c ±20% of the single reference study, ^d the interquartile ranges of the g kW h⁻¹ emissions from power generation study reviews (Section 3.5) combined with electrolyser contributions of 40 g CO₂e kg⁻¹ H₂. ^e First value represents total LCE estimates from underground mined coal.

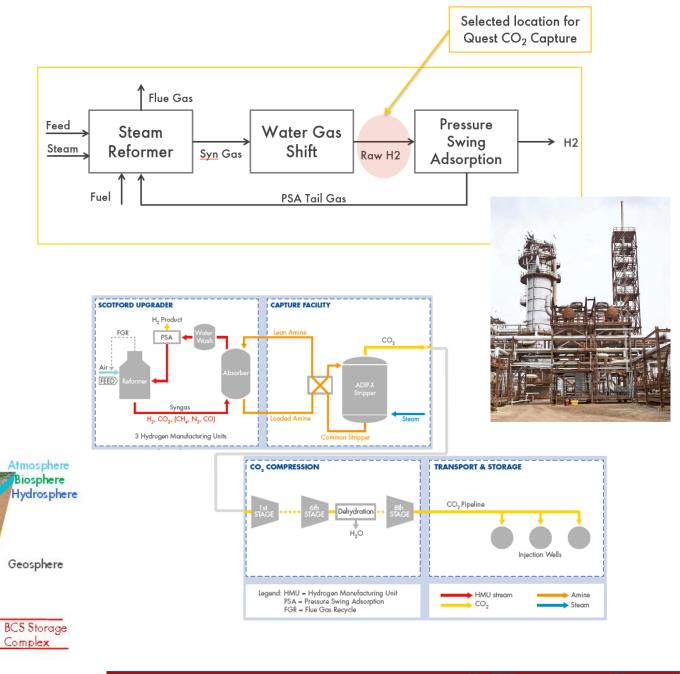
B. Parkinson, P. Balcombe, J.F. Speirs, A.D. Hawkes, K. Hellgardt, Levelized cost of CO 2 mitigation from hydrogen production routes, Energy Environ. Sci. 12 (2019) 19–40. <u>https://doi.org/10.1039/C8EE02079E</u>. *Sustainable Gas Institute, Imperial College London*


SMR: CO2 separation options

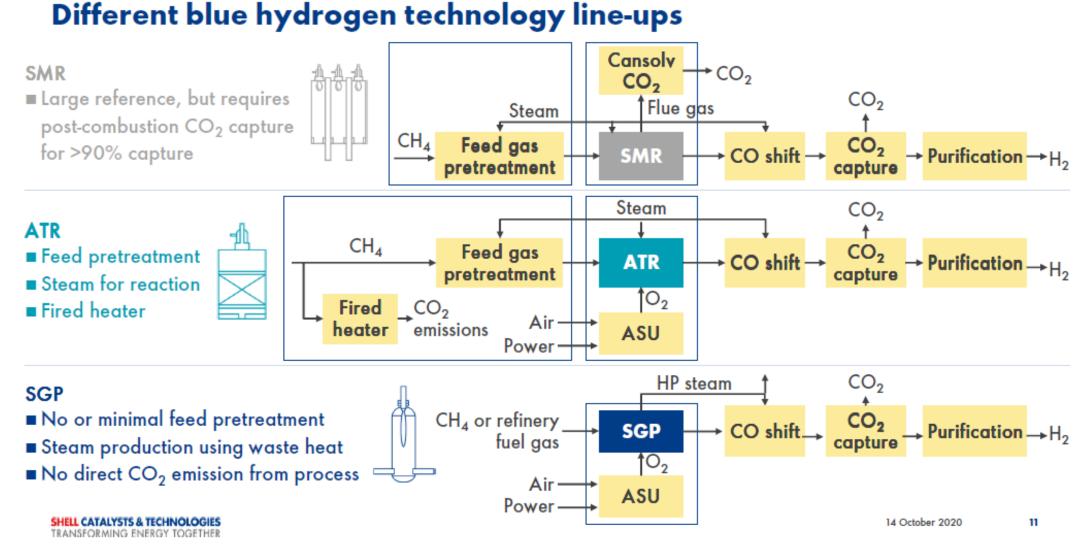
SMR BASED H2 PLANT WITH CCS, IEAGHG Technical Report 2017-02 https://ieaghg.org/publications/technical-reports

SMR = Hydrogen Manufacturing Unit (HMU): CO₂ capture options

		Pressure, psig	Gas flow, acfm	CO ₂ , %mol	CO ₂ , psi	CO ₂ , Mt/mmscfH ₂
1 Pre-combustion	Pre-PSA	350–435	4,500 (@360 psig)	15–20	50–70	13
2	Post–PSA	~ 10	25,000 (@7 psig)	48–55	< 10	13
3 Post-combustion		0	200,000 (@105°F)	16–19	~ 3	23



Shell Quest CCS: Scotford, Alberta


- CO₂ capture: One million tonnes CO₂ per year from 3 hydrogen manufacturing units at Scotford Upgrader
- Permanent storage: 2 km underground in the Basal Cambrian Sands
- Performance: Quest has captured, transported, and safely stored over 5 million tonnes of CO₂
 - Reliability, cost, and storage performance are all better than projected.
- Shell's ADIP-X amine technology utilized for $\rm CO_2$ removal from raw $\rm H_2$
 - HMU emissions reduced by almost 50%
- Integrated facility design in excess of 1.2 Mt/a

Storage: 65 km pipeline to:

- Deep saline aquifer
- High quality sandstone (~17% porosity) reservoir
- Excellent permeability (~1000mD)
- Multiple thick, continuous seals (>200m within the complex)

Blue Hydrogen Manufacture: SMR \rightarrow ATR \rightarrow POx

Shell Blue Hydrogen Technology, Hydrocarbon Processing Webcast Oct 2020

https://www.hydrocarbonprocessing.com/magazine/2021/june-2021/special-focus-process-optimization/increasing-blue-hydrogen-production-affordability

Hydrogen Manufacture: SMR \rightarrow ATR \rightarrow POx

SGP is proven for 500 t/d hydrogen equivalent production, and carbon capture and utilisation

PEARL GTL, QATAR

18 SGP trains, each with an equivalent pure hydrogen production capacity of 500 t/d¹ and in operation since 2011

¹Defined as pure H_2 production, i.e., not including any inerts, CH_4 , CO_2 , CO which will also be present depending on the final purification step.

SHELL CATALYSTS & TECHNOLOGIES

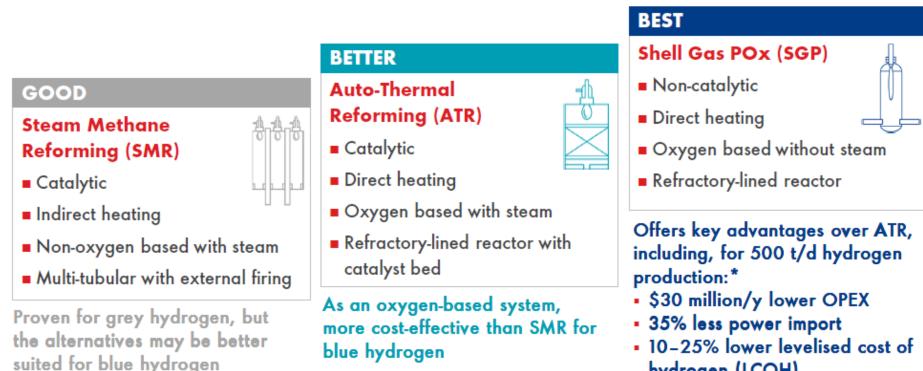
TRANSFORMING ENERGY TOGETHER

PERNIS REFINERY, THE NETHERLANDS

1 million t/y CO₂ capture capacity from SGP to be used in greenhouses

Oil refinery gives greenhouses a boost with CO2 pipeline

https://www.theguardian.com/science/2006/aug/12/oilandpetrol.food


14 October 2020

18

N. Liu, https://www.hydrocarbonprocessing.com/magazine/2021/june-2021/special-focus-process-optimization/increasing-bluehydrogen-production-affordability; Shell Blue Hydrogen Technology, Hydrocarbon Processing Webcast Oct 2020

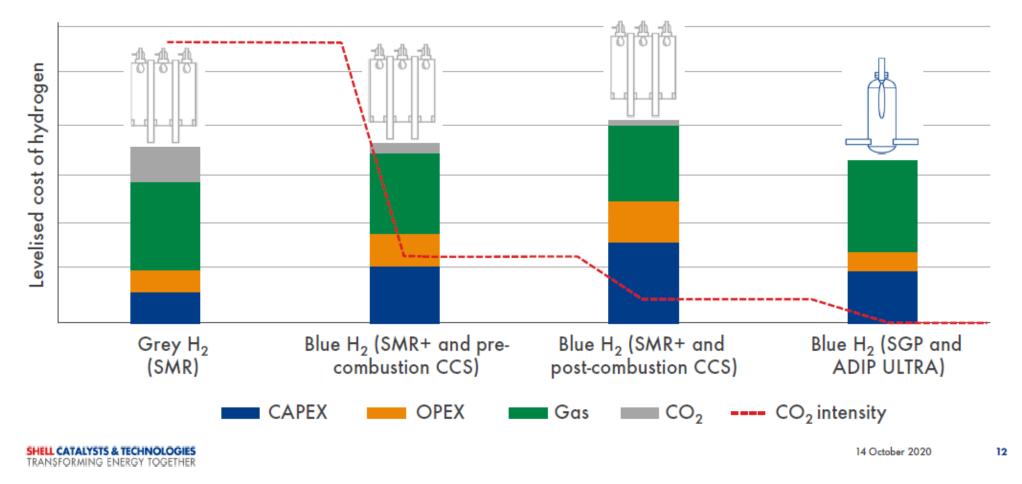
Hydrogen Manufacture: SMR \rightarrow ATR \rightarrow POx

Which technology is best for greenfield applications?

hydrogen (LCOH)

*Basis: 500 t/d of pure H₂ production (excluding inerts, CH₄, CO₂ and CO, which will also be present depending on the final purification step). Natural gas price = \$396/t; demin. water = \$8.4/t; power import = \$86/MWh; solvent, TEG and catalyst costs based on internal quotations. H₂ discharge pressure of 72 bara; CO₂ discharge pressure of 150 bara. 95% plant availability.

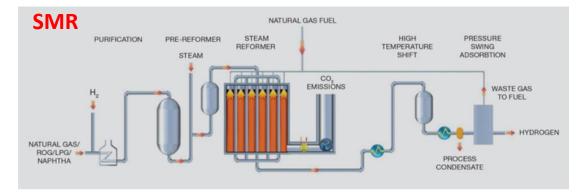
SHELL CATALYSTS & TECHNOLOGIES

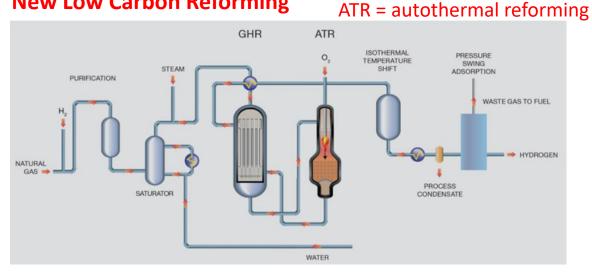

TRANSFORMING ENERGY TOGETHER

14 October 2020 9

N. Liu, Increasing blue hydrogen production affordability, Hydrocarbon Processing, June (2021). <u>https://www.hydrocarbonprocessing.com/magazine/2021/june-2021/special-focus-process-optimization/increasing-blue-hydrogen-production-affordability; see Shell Blue Hydrogen Technology, Hydrocarbon Processing Webcast Oct 2020.</u>

Hydrogen Manufacture: SMR \rightarrow ATR \rightarrow POx

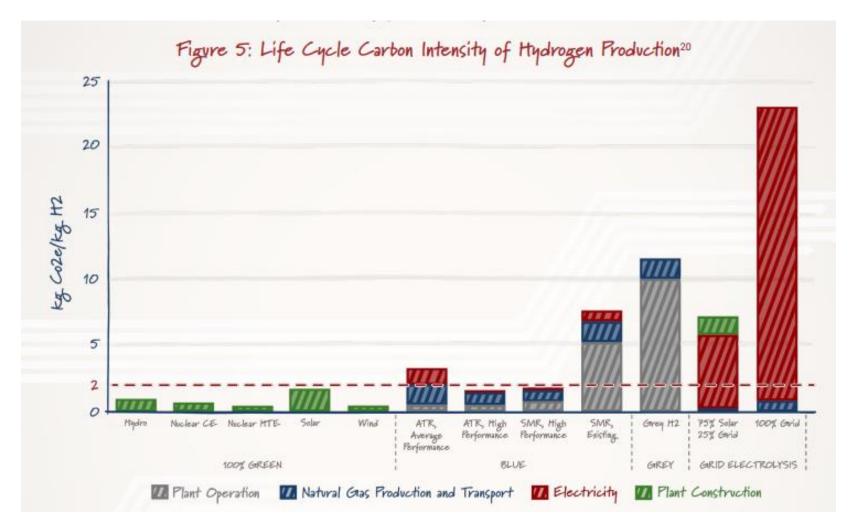

SMR is the most common hydrogen technology, but is it also the best for blue hydrogen?


N. Liu, Increasing blue hydrogen production affordability, Hydrocarbon Processing, June (2021). <u>https://www.hydrocarbonprocessing.com/magazine/2021/june-2021/special-focus-process-optimization/increasing-blue-hydrogen-production-affordability; see Shell Blue Hydrogen Technology, Hydrocarbon Processing Webcast Oct 2020.</u>

Cleaner H2 from natural gas reforming

GHR = gas heater reforming

New Low Carbon Reforming


PARAMETER	UNITS	SMR FLOWSHEET	ATR FLOWSHEET	LCH FLOWSHEET
Natural Gas as Feed	kNm³/h	39.74	41.22	38.31
Natural Gas as Fuel	kNm³/h	5.36	0.19	0
Total Natural Gas	kNm³/h	45.10	41.41	38.31
Natural Gas Energy*	MW	439	432	400
Hydrogen Production	kNm³/h	107.4	107.4	107.4
Hydrogen Energy"	MW	322	322	322
Natural Gas Efficiency	%	73.3	74.5	80.6
CO ₂ Captured	mt/h	83.7	83.6	76.3
CO ₂ Emitted	mt/h	4.4	3.1	3.7
CO ₂ Captured	%	95.0	96.4	95.4
ISBL + OSBL CAPEX	mGBP	261	195	159

* Energy is stated on a lower calorific value basis

- Use O₂ vs. air to make CO₂ capture more efficient vs. SMR ٠
- SMR here is higher cost high % capture

Bill Cotton: Clean Hydrogen. Part 1: Hydrogen from Natural Gas Through Cost Effective CO2 Capture, 15 March 2019 www.thechemicalengineer.com/features/clean-hydrogen-part-1-hydrogen-from-natural-gas-through-cost-effective-co2-capture/

Clean H2 definition

https://static.clearpath.org/2021/10/american-clean-hydrogen.pdf

Global warming potential of Hydrogen (indirect)

Table 1 – Estimated global warming consequences of zero-carbon hydrogen distribution, supply and usage systems in the UK and US, making assumptions concerning the percentage leakage rate of the future hydrogen system.

	UK	US
Global warming,		
million tonnes CO ₂		
equivalent per year		
Minimum assumed	0.26	1.26
leakage, 1%		
Same leakage as	0.6	0.6-2.7
respective natural gas		
network		
Scale up natural gas	1.5	1.6-6.8
leakage to account for		
H ₂ energy content		
Maximum assumed	26	126
leakage, 100%		
Current natural gas	76	295-360
consequences		

Radical Reactions:Indirect Global Warming
Potential due to atmospheric
reactions with OH, NO $OH + H_2 \rightarrow H + H2O$
 $H + O2 \rightarrow HO_2$
 $HO_2 + NO \rightarrow NO_2 + OH$
 $HO_2 + NO \rightarrow NO_2 + OH$
 $NO_2 + hv \rightarrow NO + O$
 $O + O_2 \rightarrow O_3$ H2 leak rateTg CO2/yr % of fossil

 gas
 1.5
 1.6–6.8
 1%
 417
 1.81%

 tent
 26
 126
 10%
 4167
 18.12%

 gas
 76
 295–360
 Fossil economy
 23000
 100%

• Derwent, R. et al. (2006) "Global environmental impacts of the hydrogen economy", Int. J. Nuclear Hydrogen Production and Application 1(1): 57-67.

• R. G. Derwent, D. S. Stevenson, S. R. Utembe, M. E. Jenkin, A. H. Khan and D. E. Shallcross, Global modelling studies of hydrogen and its isotopomers using STOCHEM-CRI: Likely radiative forcing consequences of a future hydrogen economy, *International Journal of Hydrogen Energy*, 2020, **45**, 9211–9221.

• R. A. Field and R. G. Derwent, Global warming consequences of replacing natural gas with hydrogen in the domestic energy sectors of future low-carbon economies in the United Kingdom and the United States of America, International Journal of Hydrogen Energy, 2021, 46, 30190–30203.

N. Warwick, P. Griffiths, J. Keeble, A. Archibald, J. Pyle, University of Cambridge and NCAS and K. Shine, University of Reading, Atmospheric implications of increased Hydrogen use (2022) www.gov.uk/government/publications/atmospheric-implications-of-increased-hydrogen-use

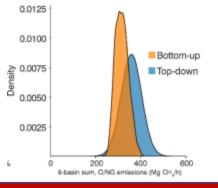
Methane Leakage

R. W. Howarth and M. Z. Jacobson, How green is blue hydrogen?, *Energy Sci Eng*, 2021, ese3.956.

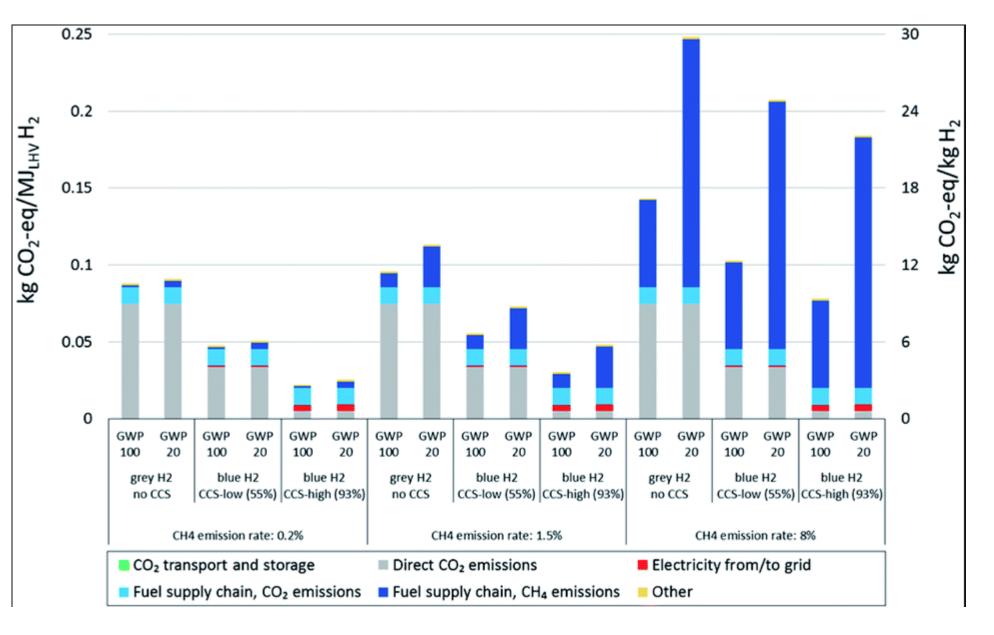
Greenhouse gas footprint per unit of heat energy 200 CO2 CH, 150 g CO₂-equivalents per MJ 100 20 0 Blue hydrogen (w/o flue-gas capture) Grey hydrogen Blue hydrogen (with flue-gas capture) Coal Natural gas Diesel oil

Algeria: Source: Bloomberg Green 9/1/2021

Methane emissions detected over Algeria from January 2019 to present including five observed this month. *Source: Kayrros SAS*


We're tackling methane on every front — with methane hunters Dr. David Lyon (EDF) and Dr. Anna Robertson (U. of Wyoming) in the <u>Permian Basin</u>, <u>MethaneSAT</u> and with <u>Google Earth Outreach</u>. bottom right.

https://www.edf.org/climate/methane-crucial-opportunity-climate-fight


R. A. Alvarez, D. T. Allen et al.,

Assessment of methane emissions from the U.S. oil and gas supply chain, *Science*, 2018, eaar7204.

https://www.science.org/lookup /doi/10.1126/science.aar7204

2022 Methane emissions update

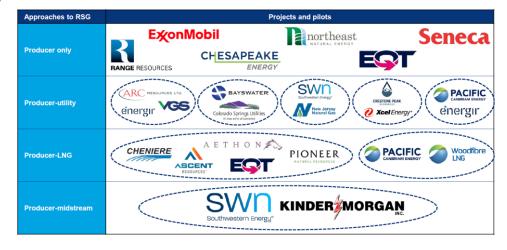
C. Bauer, K. Treyer, C. Antonini, J. Bergerson, M. Gazzani, E. Gencer, J. Gibbins, M. Mazzotti, S. T. McCoy, R. McKenna, R. Pietzcker, A. P. Ravikumar, M. C. Romano, F. Ueckerdt, J. Vente and M. van der Spek, On the climate impacts of blue hydrogen production, Sustainable Energy Fuels, 2022, 6, 66–75.<u>https://pubs.rsc.org/en/content/articlepdf/2022/se/d1se01508g</u>

Responsibly sourced gas (RSG)

Responsibly sourced gas: cleaner, greener, and here to stay

woodmac.com 🐔

Each certification program has a unique approach for recognizing performance

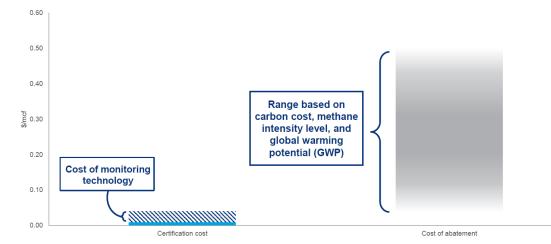

Certification is differentiated from other voluntary initiatives and commitments because it provides an explicit declaration of achievement by an administering organization to the participant

	Standard name	Continuous monitoring required?	Specific technology required?	Independent third- party assessment	Performance rating (low to high)	Funding model
Project Canary	TrustWell Responsible Gas	\checkmark	\checkmark	×	Three scoring levels: Silver, Gold, Platinum	For-profit
MiQ	MiQ Standard	×	×	\checkmark	Six grades from A-F	Not-for-profit
Equitable Origin	EO100 [™] for Responsible Energy Development	×	×	\checkmark	Three levels of performance targets (PTs): PT1, PT2 and PT3	Not-for-profit
ISO ISO	ISO 14001:2015	×	×	\checkmark	Not applicable	Not-for-profit

 https://www.woodmac.com/news/opinion/responsiblysourced-gas-rsg-a-primer/

Responsibly sourced gas: cleaner, greener, and here to stay

Multiple RSG partnerships form across different stakeholders in the gas industry

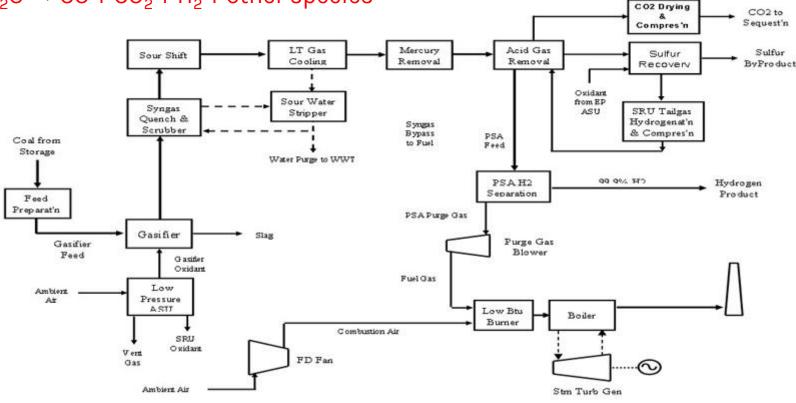


Responsibly sourced gas: cleaner, greener, and here to stay

woodmac.com 👽

Potential cost of RSG certification versus cost of abatement under carbon tax

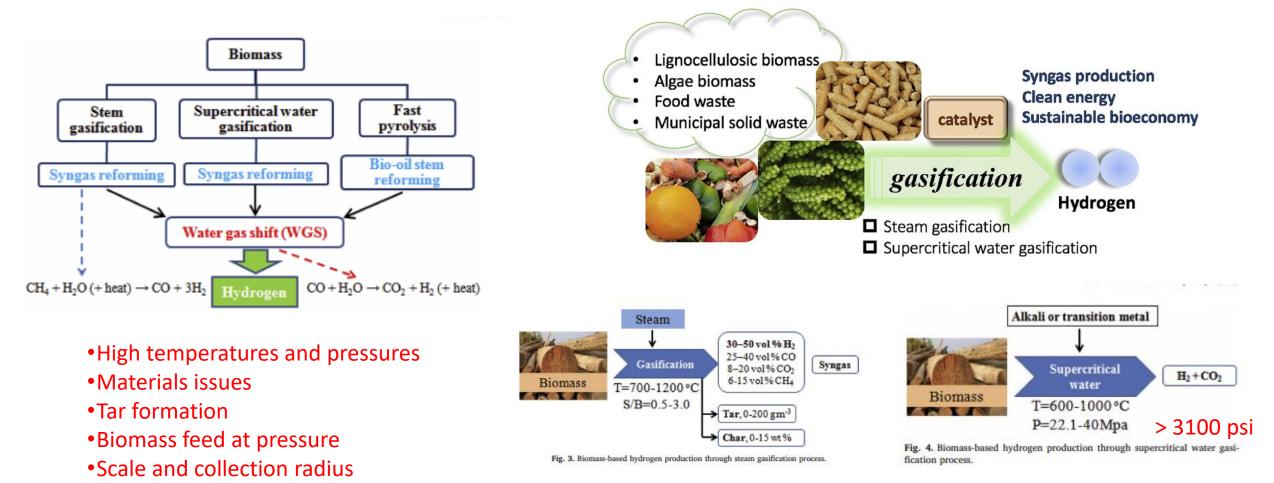
The value of RSG becomes the abatement cost, which is the difference of carbon cost of non-RSG certified gas at the higher methane intensity and RSG certified gas at lower methane intensity

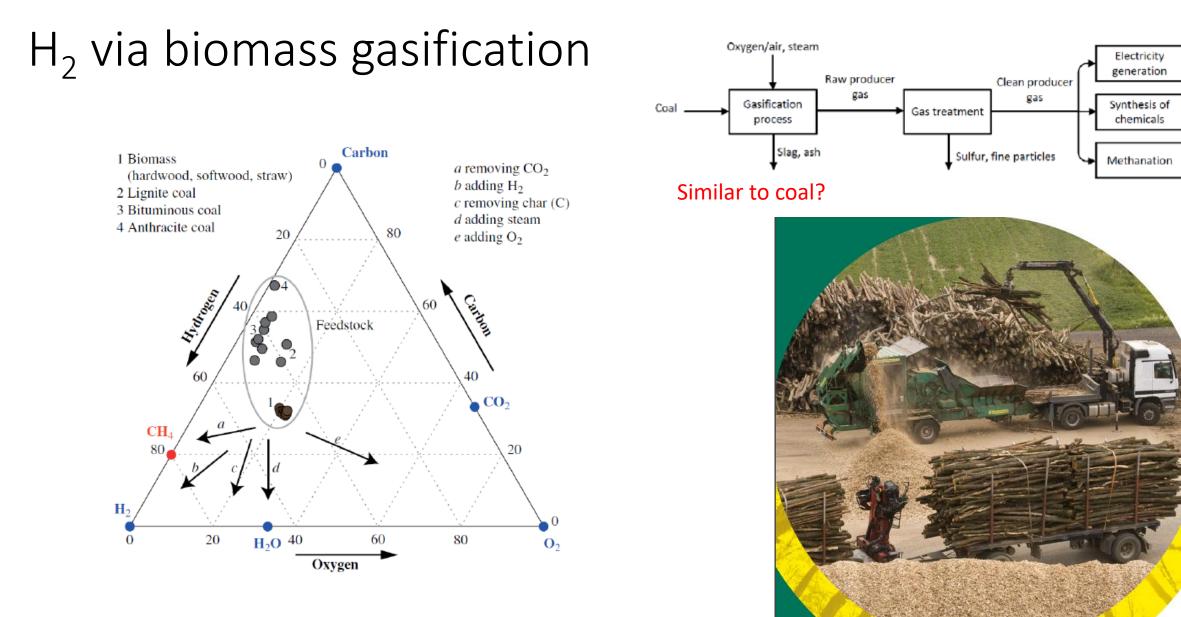

Sources: California emission price from August 2021 settlement (CARB); Europe ETS Price September 2021 settlement (ICE)

Hydrogen production from coal

Cheapest in China!

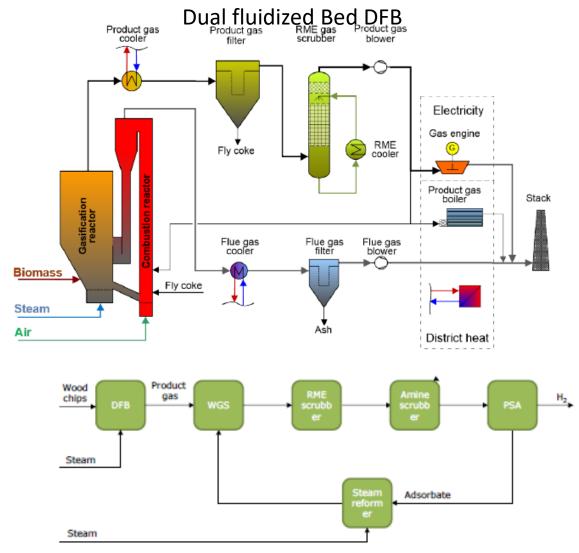
Coal gasification reaction (unbalanced):


 $CH_{0.8} + O_2 + H_2O \rightarrow CO + CO_2 + H_2 + other species$

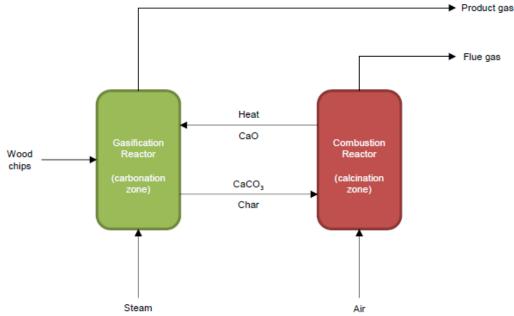

https://www.energy.gov/eere/fuelcells/hydrogen-production-coal-gasification;

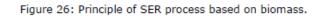
https://netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/coal-to-hydrogen-without-power-export

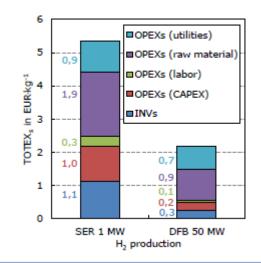
2020 Review: Biomass gasification



L. Cao, I. K. M. Yu, X. Xiong, D. C. W. Tsang, S. Zhang, J. H. Clark, C. Hu, Y. H. Ng, J. Shang and Y. S. Ok, Biorenewable hydrogen production through biomass gasification: A review and future prospects, *Environmental Research*, 2020, **186**, 109547.



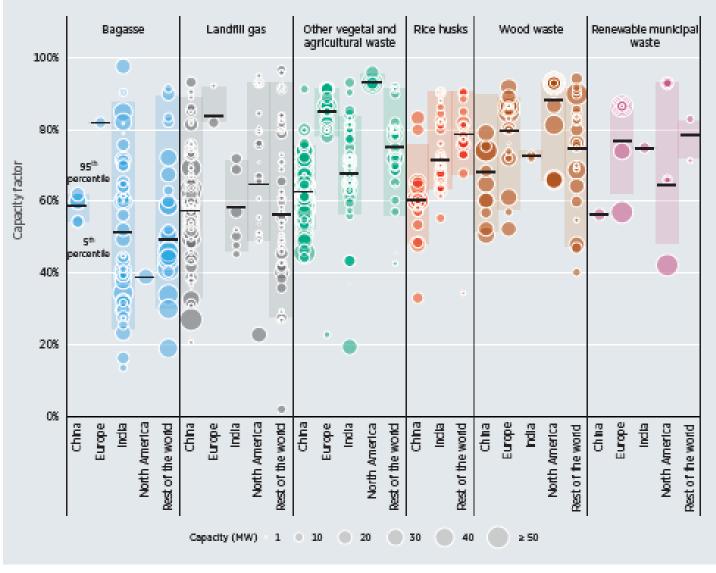

IEA Bioenergy, Hydrogen from biomass gasification (2018)


H₂ via biomass gasification

Sorption enhanced reactor (SER) = chemical looping

IEA Bioenergy, Hydrogen from biomass gasification (2018)

Biomass gasification:



Municipal public waste as feedstock

- <u>https://www.fchea.org/in-transition/2019/7/8/hydrogen-production-from-biomass-and-organic-waste</u>
- https://www.forbes.com/sites/pikeresearch/2020/04/22/dont-forget-about-biomass-gasificationfor-hydrogen/?sh=114eeda2724f

IRENA: Capacity factors for biomass

IRENA (2020), Renewable Power Generation Costs in 2019, International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/publications/2 020/Jun/Renewable-Power-Costs-in-2019 Figure 7.5 Project capacity factors and weighted averages of selected feedstocks for bioenergy power generation projects by country and region, 2000-2019

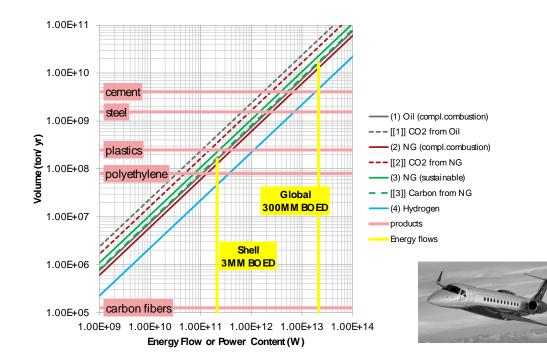
Source: IRENA Renewable Cost Database.

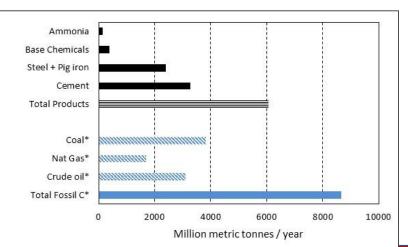
Energy Systems Analysis: Targets for Carbon Utilization

Scientific Challenge

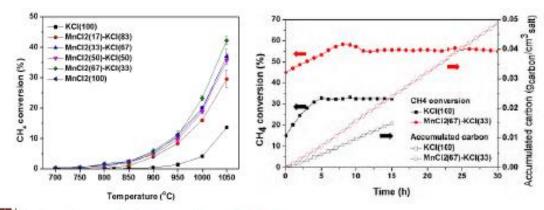
- Develop new building techniques and products for carbon utilization to allow offset of a significant portion of fossil energy demand.
- Develop and optimize pathways for clean H₂ production with co-production of carbon products
- Develop additive manufacturing, polymeric and composite products with functionality (flame retardancy, strength) to serve in build industry
- Advanced process concepts including renewable energy incorporation for coproduction of hydrogen and C-products suitable for build industry and advanced manufacturing methods

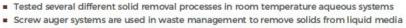
• Impact:


- Large carbon sink via carbon utilization to build industry products.
- H2 is freed for clean energy systems use (fuel cell)

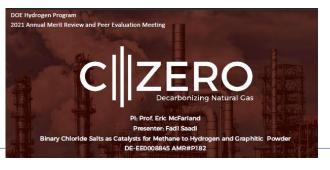


3D printed advanced composite Shelby Cobra (ORNL)

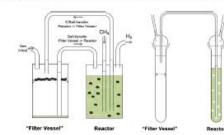

Low cost advanced manufacturing composite building (Mark Goulthorpe MIT)


*C from CO2 emissions (2012)

Methane Pyrolysis: CZero



Carbon Removal via Screw Auger (Task 2)

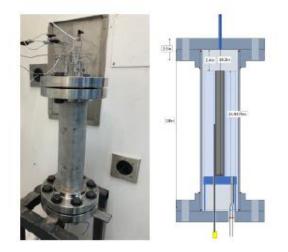


Accomplishment: Successfully removed carbon analog from aqueous system (-500 g/hr)

- AMR DOE 2021
- https://www.czero.energy/

High Temperature Carbon Transfer (Task 2)

- Analyzed a semi-batch process to separate the solid carbon from the molten salt
- Allows for isolation of the filter cake and subjecting the filter cake to normal or reduced pressure evaporative drying
- Accomplishment: Successfully demonstrated in a high temperature molten salt system

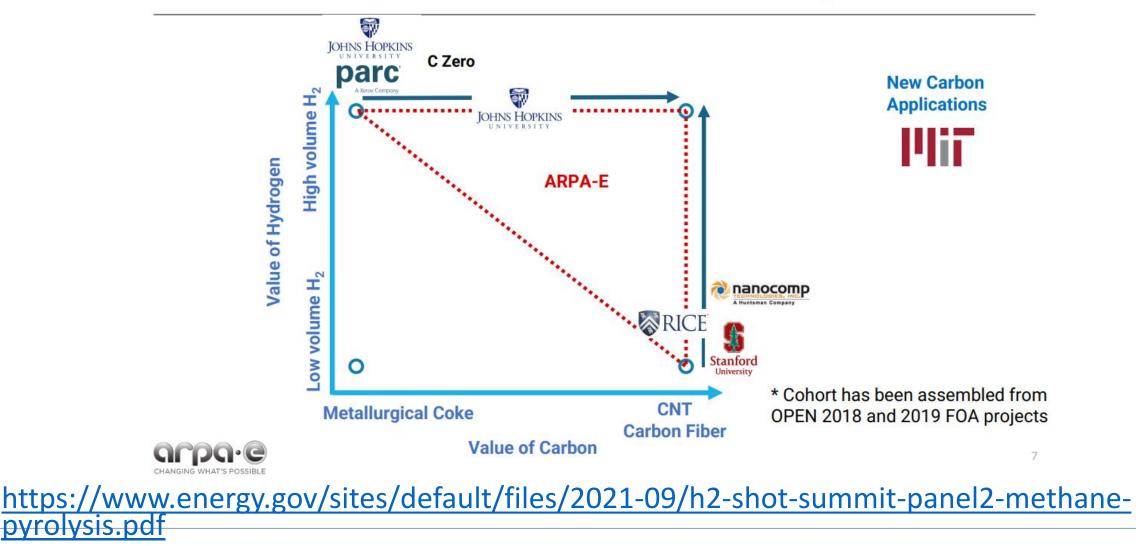

CZERO

Fabrication and Testing of High Pressure Reactors (Task 1)

- Internally heated metal reactor fabricated in order to test systems at high pressure
- 1" dia fused quartz crucible with molten salt
- Vacuum/purge and pressurization with Ar gas
- Reactor was operated at 100-200 mL/min CH₄ flow at 17.7 bar (256 psig) and 1050-1100 C.
- The reactor functions as intended; wall temperature remains low enough under forced air cooling (<200 C) to allow for safe operation at >1100 C, 20 bar.
- Accomplishment: Operate molten salt system at High Temperature and Pressure

Molten metal methane pyrolysis

III iii THE REACTOR CONCEPT Lower cost H₂ \$0.5-1.50/kg Produces carbon black We now know how to make it No CO₂ emissions No corrosion – No plugging! We know how to pump Sn(I) CH₄ (S)Carbon Black (CB) H_2 H_{2} Sn LDHX Protrusions create eddies Sn to prevent CB contact Exchanger CB CH₄ Aseguin Henry, et al., MIT (2021)



DOE Methane Pyrolysis Cohort

Marc von Keitz Program Director @ ARPA-E

ARPA-E Methane Pyrolysis Cohort* takes 2-pronged approach

DOE Methane Pyrolysis Players (2021)

Marc von Keitz Program Director @ ARPA-E

METHANE PYROLYSIS – COMMERCIAL EFFORTS

Commercial docs database: <u>https://docs.google.com/spreadsheets/d/1IcMP7WImhntRz3hKvVjvr2IwrFprgCe-1bYAtY56eOk/edit?usp=sharing</u>

https://www.energy.gov/sites/default/files/2021-09/h2-shot-summit-panel2-methane-pyrolysis.pdf

Monolith Receives Conditional Approval for a One Billion-Dollar U.S. Department of Energy Loan

• Title XVII of the Energy Policy Act of 2005 (<u>42 U.S.C. Sec. 16511, et. seq.</u>) provides authority for the D.O.E. to guarantee loans for projects that "avoid, reduce, or sequester air pollutants or anthropogenic emissions of greenhouse gases; and employ new or significantly improved technologies as compared to commercial technologies in service in the United States at the time the guarantee is issued." Current conventional processes to create carbon black release large amounts of greenhouse gases into the atmosphere. Through Monolith's methane pyrolysis technology, the company is able to prevent an estimated 2.3 tons of CO2 from being released for every ton of carbon black produced. With its production of cleanly made hydrogen, carbon black and ammonia, Monolith expects that its Olive Creek, expansion will prevent one million tons of greenhouse gase emissions from entering the atmosphere each year compared to traditional manufacturing processes. While this conditional commitment demonstrates DOE's intent to finance the project, several steps remain, and certain conditions must be satisfied before a final loan guarantee is issued.

As the only U.S.-headquartered tire manufacturer, it's especially rewarding to be at the connection point of significant U.S. innovation with Monolith and the commitment of the Department of Energy to sustainable outcomes," said Richard J. Kramer, chairman, chief executive officer and president, The Goodyear Tire & Rubber Company. "We are excited to work with Monolith to reduce our carbon footprint and further our use of alternative materials as we continue to deliver industry-leading products."

https://www.prnewswire.com/news-releases/monolith-receives-conditional-approval-for-a-one-billion-dollar-us-department-of-energy-loan-301450496.html

Hydrogen via hydrocarbon reforming

High Capacity factor

- Lowest production costs today (consider subsidies)
- Consider methane pyrolysis if CO2 storage is challenged
 Under pressure for reducing costs of future green
 electrolysis

Thank you!

JOE POWEII Joseph B. Powell, PhD NAE, Fellow AIChE, retired Shell Chief Scientist – Chemical Engineering University of Houston Energy Institute JBPowel5@central.UH.edu; JBPChE@outlook.com;

Agenda

- I would appreciate it if you can cover:
- Dr. Joe Powell (15 minutes)
 - Blue hydrogen production metho: SMR, ATR, POX, methane pyrolysis, gasification, w CCS, costs of production,..
- Dr. Olga Marina
 - Green hydrogen production options: electrolyzes tech overview, costs, limitations, benefits
- Prof. Jorge Gascon:
 - Hydrogen production R&D: Current and future developments, investments, technology targets, etc..