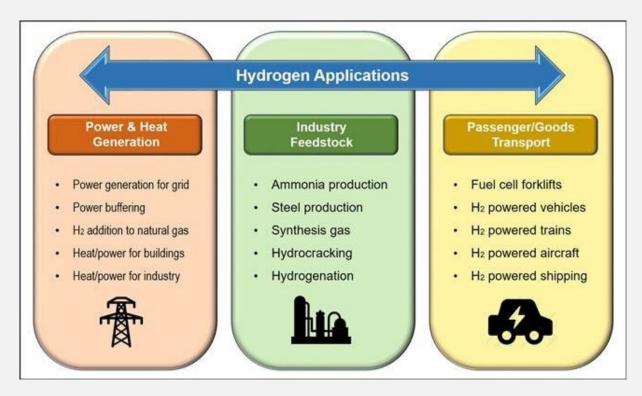
جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

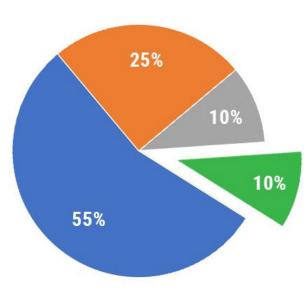

Hydrogen Potential Role in Decarbonizing Heavy Industry Bassam Dally

Clean Combustion Research Center (CCRC)

Talk Content

- Hydrogen versatility
- Hydrogen for energy storage
- Hydrogen use in Iron/Steel production
- Hydrogen use in cement production
- Hydrogen use in fertilizers production
- Final thoughts and future trends

Hydrogen Versatility



Hydrogen Versatility

Ammonia Production 55%

GLOBAL HYDROGEN CONSUMPTION BY INDUSTRY

Data from Hydrogen Europe (hydrogeneurope.eu/hydrogen-applications) Illustration © WHA International, Inc. (wha-international.com)

Methanol Production 10%

Other 10%

Hydrogen Other Use

• Food

To turn unsaturated fats into to saturated oils and fats, including hydrogenated vegetable oils like margarine and butter spreads.

Metalworking

Hydrogen is used in multiple applications including metal alloying and iron flashmaking.

Welding

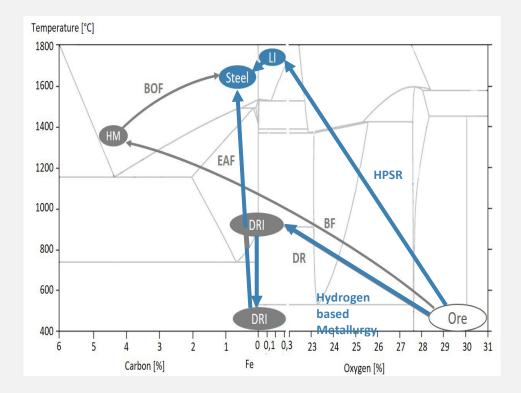
Atomic hydrogen welding (AHW) is a type of arc welding which utilizes hydrogen stream.

Flat Glass Production

H2/N2 mixture is used to prevent oxidation and defects during manufacturing.

Electronics Manufacturing

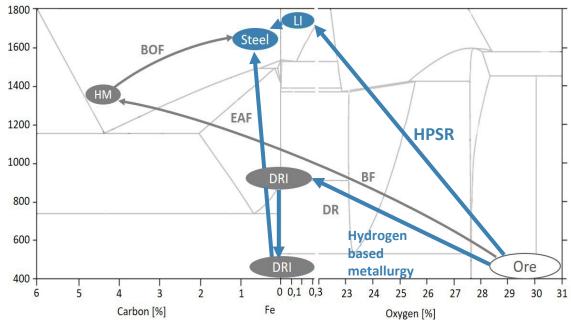
As an efficient reducing and etching agent, hydrogen is used to create semiconductors, LEDs, displays, photovoltaic segments, and other electronics.


Medical

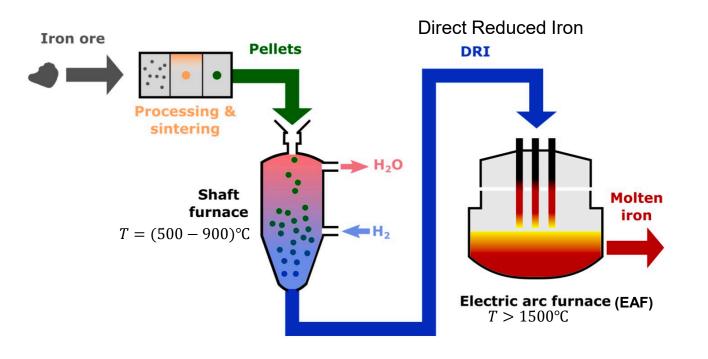
Hydrogen is used to create hydrogen peroxide (H_2O_2) . Recently, hydrogen gas has also been studied as a therapeutic gas for a number of different diseases.

Steam	R&I	R&D	R&D	DEM	DEM	DEM	CR		H2/NH3 k	plending a	nd boiler	s retrofittir	ng (TRL7)
Generators	R&I) R&D	R&D	R&D	DEM	DEM	DEM	DEM	CR		H2/O2/	H2O stean	n (TRL4)	
Iron Reduction	R&I) R&D	DEM	DEM	DEM	CR			Modif	ying exist	ting DRI p	orceses (TRL7)	
	R&I	R&D	R&D	R&D	R&D	R&D	R&D	R&D	DEM	DEM	DEM	DEM	CR	HPRS (TRL4)
Kiln (Lime and	R&I	R&D	DEM	DEM	DEM	CR			Low	carbon fu	els (bioma	ass, NG)(TRL8)	
Cement)	R&I	R&D	R&D	R&D	R&D	R&D	R&D	DEM	DEM	DEM	DEM	DEM	CR	Steam calcination (TRL4)
Heating	R&I	R&D	DEM	DEM	DEM	DEM	CR	4	Hydro	ogen blen	ding and	retrofting (TRL7)	
Furnaces	R&I) R&D	R&D	DEM	DEM	DEM	DEM	CR	F	Pure hydr	ogen buri	ners (TRL	6)	
	2022		2	025				20	030				20)35

Strategies to Decarbonize HI


	Direct Electrification	Solar Thermal	Hydrogen	Ammonia	Bio-fuels
Iron and Steel	Electric furnaces (9) Direct Reduction Iron (9) Plasma reduction (3)	Heat source (5)	Reductant (9) Heat source (7)	Reductant (4) Heat source (4)	Heat source (4)
Cement	Electric kilns (3)	Direct calcination (3)	Heat source (4) Steam calcination (3)	Heat source (4)	Heat source (9)
Alumina	Electric heating (4)	Indirect Bauxite calcination (6)	Heat source (6) Steam calcination (5)	Heat source (4)	Heat source (4)
Petrochemicals	Electric furnaces (3)	Heat source (4)	Heat source (6) Chemical (9)	Heat source (4)	Heat source (4)

Single Step versus Two-Steps Reduction

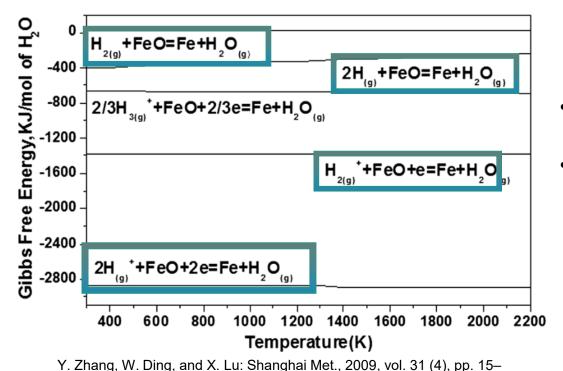

- No need for preprocessing, sintering, or pelletization of the iron ore
- Energy reduction of
 54.77% in comparison
 with the BF
- Low-grade iron ore <69%
- Zero CO₂ emission

Process routes for steel production

BF - Blast Furnace, BOF - Basic Oxygen Furnace, EAF - Electric Arc Furnace, HM - Hot Metal, DRI - Direct Reduced Iron, HPSR - Hydrogen Plasma Smelting Reduction, LI - Liquid Iron

Single-step process

Direct Reduced Iron (DRI) – Electric Arc Furnace (EAF)



- Processing & Sintering requires a large amount of energy
- It requires a highgrade iron (>69%). The iron grade in many countries is below 40%

Brännberg Fogelstr öm, J., Experimental Study of the Temperature Profile in an Iron Ore Pellet During Reduction Using Hydrogen S, tep process Master's thesis, KTH Royal Institute of Technology, 2020.

Hydrogen Plasma Smelting Reduction (HPSR)

20.

- Negative Gibbs free energy
- Temperature obtained in an H₂ - plasma medium is greater than the melting point of oxide ore.

11

Reduction Methods

In Flight Reduction

- Small moving particles being reduced while in movement and bring to rest in a collector;
- 25-150 micrometers;
- · Seconds or milliseconds.

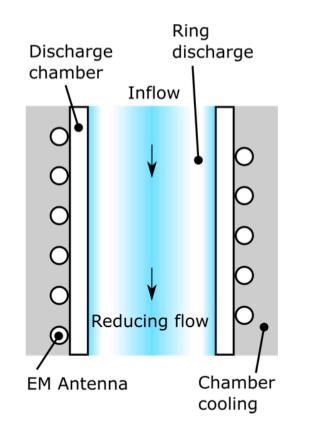
Direct Reduction

- The iron oxide stays stationary in a reductant flow.
- 1000-6000 micrometers;
- Minutes or hours;
- Higher degree of reduction and lower energy intensity.

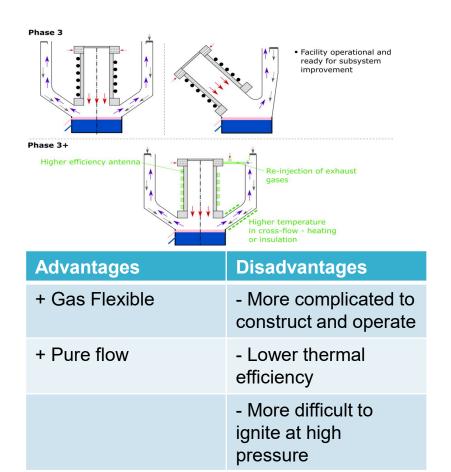
Combined

• Pulverized particles of moving iron oxide are reduced and the process finishes with further reduction in plasma volume.

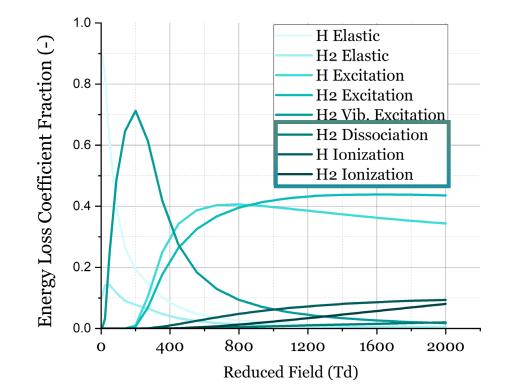
Plasma Generators for HPSR- Arc Heated Flow (EAF)


13

Gen of H H+ t enha redu


Impinging arc discharge Reducing flow/ reaction zone	scharge	Cathode -6 -4 -2 -
Advantages	Disadvantages	A Axial distance (m)
+ Simple to construct	- Susceptible to working gas degradation	Anode 8 1500 K
+ Extensive Literature	- Degradation through arc attachment	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
+ High efficiency	- Degradation can alter operational stability and reducing flow chemistry	0 2 4 6 8 10 Radial distance (mm)

Plasma Generators for HPSR- Microwave Inductive Reactor


Exhaust analysis

Planned Diagnostics

		reeningue	(mass spectrometer)
Pre/post- process	Oxide/reduced iron compositon Oxide size and shape Oxide size distribution Oxide/reduced ore mass	 X-ray diffraction Wet chemical analysis Atom Probe tomography Scanning Electron microscopy Granulometer Scales 	Exhaust Optical access windows
Process	Absorbed plasma power (1) Chamber pressure (2) Surface temperatures (3) Hydrogen utilization (4)	 Calorimetry Pressure gauge Pyrometry Mass spectrometry and water mass measurement Infrared analyser for water content Calculations from oxygen removal 	Fibre optic taps, outflow Slag outflow Molten iron outflow Gas source
Plasma Source	Input voltage (5) Antenna current & frequency (6) Discharge shape and movement (7) Plasma chemistry (8) Specific species distribution (9) Specific species temperature/velocity (10)	Voltmeter HOKA probe CCD camera and photodiode array Mass spectrometry Monochromater/narrow bandwidth filter Fabry-Perto spectroscopy	Antenna current probe Temp, out Temp, out Power supply

Simulations of electron-impact reactions

$$H + e^{-} \rightarrow H + e^{-}$$

$$H_{2} + e^{-} \rightarrow H_{2} + e^{-}$$

$$H + e^{-} \rightarrow H^{*} + e^{-}$$

$$H_{2} + e^{-} \rightarrow H^{*}_{2} + e^{-}$$

$$H_{2} (v-1) + e^{-} \rightarrow H^{*}_{2} (v) + e^{-}$$

$$H_{2} + e^{-} \rightarrow 2H + e^{-}$$

$$H + e^{-} \rightarrow H^{+} + 2e^{-}$$

$$H_{2} + e^{-} \rightarrow H^{+}_{2} + 2e^{-}$$

R&D Questions

- What are the reaction rates of key steps in the reduction process?
- Can we probe the reduction process to better understand the mechanism of reduction and the interdependence of plasma-particles?
- What is the best hydrogen plasma actuation strategy to increase the efficiency of the process?
- Is it possible to scale up the process to an industrial scale maintaining the energy cost of conversion (GJ/T)?

Ammonia Iron Reduction

In the temperature range from 793 to 863 K, hematite can be directly reduced to magnetite by ammonia:

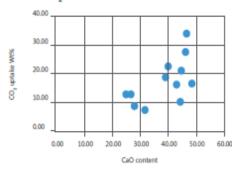
 $1/2Fe2O3 + 1/9NH3 \rightarrow 1/3Fe3O4 + 1/6H2O + 1/18N2)$

- At temperatures above 873 K, ammonia causes the generation of α-Fe (alpha iron). X-ray diffraction (XRD) measurements showed that α-Fe was immediately nitrided to an ε-Fe3-xN (0 ≤ x ≤ 1) phase, and the N/Fe atomic ratio decreased gradually with increasing temperatures.
- Magnetite was reduced mainly to iron by hydrogen generated from the decomposition of ammonia
 1/3Fe3O4 + 4/3H2 → Fe + 4/3H2O

More work is needed to resolve process and technical challenges of using ammonia as a reductant

18

ISIJ International, Vol. 55 (2015), No. 4, pp. 736–741



R&D - Iron and Steel

Steel Slag Carbonation

- Iron reduction produces large quantity of slag ~20% of the mass of iron produced;
- Tenova HYL DRI process uses Hydrogen currently produced from the reforming of methane;
- The process produces a stream of pure CO2 that is vented to the atmosphere;
- Carbonation is a process which binds CO2 into a solid (slag);
- Research shows that we can store CO2 equivalent to 7.5%-34% by mass of slag produced depending of CaO content;
- Research also shows that the carbonated slag yield strength increases by ~20%;
- Potentially we can store all CO2 and make iron carbon free.

CO, uptake of different steel lags

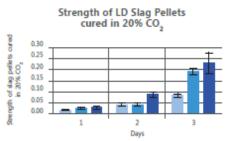
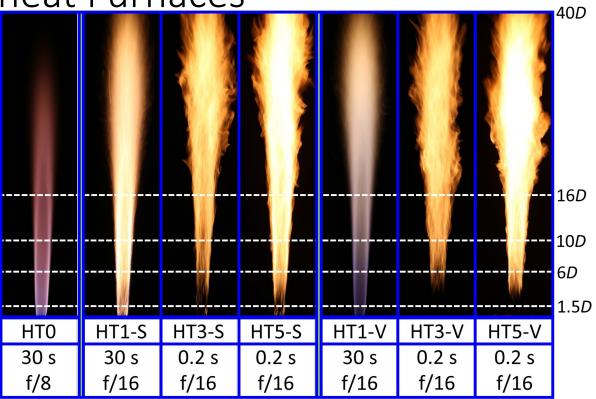
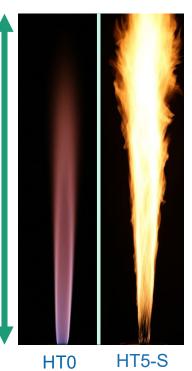



Figure 1 Percentage of CO2 by weight that can be bonded with slag as function of CaO content (top), and impact of carbonation on strength of slag (bottom). (Carbon8 Systems 2020)

Hydrogen for Reheat Furnaces

- Thermal radiation from H2 flames is very low
- Many industrial applications requires enhanced radiation, furnaces, boilers, kilns, etc
- Doping hydrogen flames with aromatics will help increase radiation
- Radiation lower flame temperature and reduces NOx.
- Bio-oils can be used



Hydrogen for Reheat Furnaces

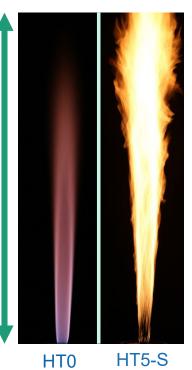
- 1:1 H_2/N_2 jet flames in air coflow
 - $D_{jet} = 20 \text{ mm}$
 - $\dot{Re}_D = 5k$
 - $D_{coflow} = 110 \text{ mm}, v = 0.33 \text{ m/s}$
- Toluene added as percent mole of H₂
 - vapour (V)
 - droplets (S) \rightarrow dilute spray
 - negligible heat added ($\leq 0.35\%$)
 - − Z_{st} shift: 0.30 (H₂) → 0.20 (5% tol.)

Case	toluene (% H ₂)	phase		
HT0	0	-		
HT1-S	1			
HT3-S	3	droplets (40 µm)		
HT5-S	5	(40 µm)		
HT1-V	1			
HT3-V	3	vapour		
HT5-V	5			

30s exp

0.2s

exp


21

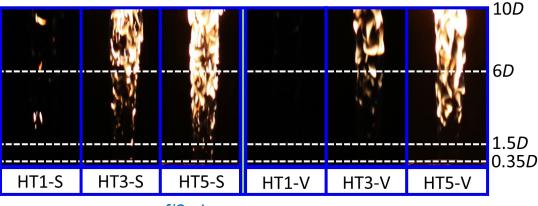
Hydrogen for Reheat Furnaces

- 1:1 H_2/N_2 jet flames in air coflow
 - $D_{jet} = 20 \text{ mm}$
 - $\dot{Re}_D = 5k$
 - $D_{coflow} = 110 \text{ mm}, v = 0.33 \text{ m/s}$
- Toluene added as percent mole of H₂
 - vapour (V)
 - droplets (S) \rightarrow dilute spray
 - negligible heat added (≤ 0.35%)
 - $Z_{st} \text{ shift: } 0.30 \text{ (H}_2) → 0.20 \text{ (5\% tol.)}$

Case	toluene (% H ₂)	phase		
HT0	0	-		
HT1-S	1			
HT3-S	3	droplets (40 µm)		
HT5-S	5	(40 µm)		
HT1-V	1			
HT3-V	3	vapour		
HT5-V	5			

30s exp

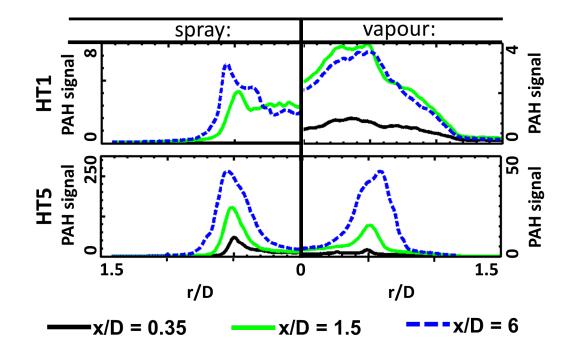
0.2s


exp

22

Soot Sheets Vapor versus Spray

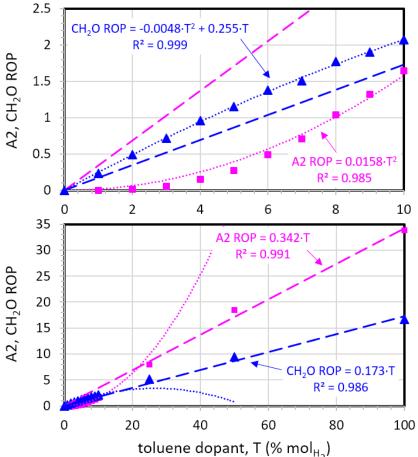
- Distinct regions of soot in all flames except lowest concentration of doping by vapour
- Heterogeneous combustion around droplets evident in spray flames
- Soot around droplets similar to soot kernels, upstream of soot sheets



f/2, 1 ms exposure

PAH PLIF Formation

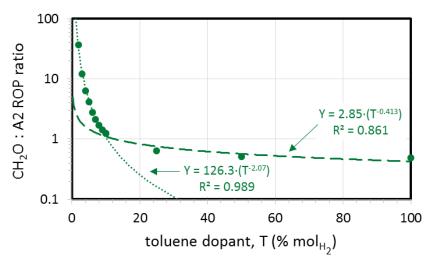
- 1% (mol_{H₂}) toluene
 - very little PAH from dilute spray in near-field
 - similar signal at x/D = 1.5
 - greater signal from dilute spray further downstream
- 5% (mol_{H2}) toluene
 - qualitatively similar profiles
 - 5× higher in dilute spray


Fate of carbon in doped flames

- Pathway to soot via PAH, via A2
 - mostly endothermic
 → pyrolysis
- Pathway to CO predominantly via CH₂O
 - mostly exothermic
 - ightarrow oxidation
- Consider peak rate of production of both A2 and CH₂O

Trends with toluene additig

- Different trends for the two ranges of toluene addition:
 - 0-10% (quadratic)
 - 10-100% (linear)
- PAH, and soot, formation favoured for high toluene concentrations (blending)
- CH₂O formation favoured for low toluene concentrations (doping)
 - not adequately represented by linear fits
- Toluene addition via vapour is doping, blending occurs locally around evaporating droplets



Peak rate of production of CH₂O and A2 as a function of toluene addition ²⁶

Trends with toluene addition

- Two regimes also seen from taking a ratio of peak CH₂O and A2 production rates
- Blending regime
 - A1CH₃ decomposes to C₆H₅, C₅H₅ and C₂H₂ directly
 - C₆H₅ forms monocyclic aromatics and C₉H₇ (A2 precursor)
 - C_5H_5 forms C_2H_2 and C_3H_3 (A2 precursor) \rightarrow favours PAH formation and growth
- Dopant regime
 - C₆H₅, C₅H₅ and C₂H₂ formation are all suppressed

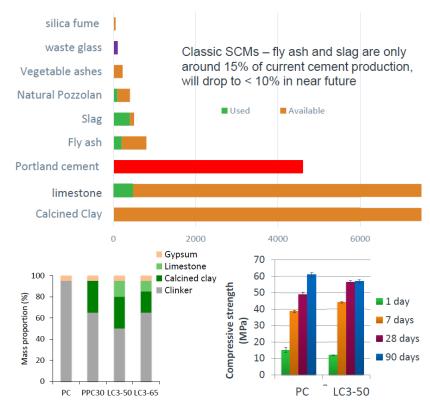
Ratio of peak rate of production of CH_2O and A2 as a function of toluene addition

Finding from Hydrogen Doping

- Experimental measurements show soot volume fraction increases non-linearly with small concentrations of toluene (A1CH3) added to turbulent H2/N2 jet flames
- Addition of toluene to 3-5% (molH2) result in significant soot loading with little change in OH concentration
- Explained by rate of production and pathway analyses of CH2O and A2
- Combined results suggest that a non-linear hydrocarbon doping regime should be considered separately to blending fuels in H2 flames

Cement Industry - Decarbonization

	SCOPE OF EMISSIONS	DECARBONIZATION PATHWAY	POTENTIAL TECH
MATERIAL	60 %	Efficiency: use less binder to achieve the same strength material Substitution: use more binder (less CO2 intensive than Ordinary Portland Cement) Waste: reduce wasted cement material	 New generation SCMs Binder efficiency Alternative CaO sources
ENERGY	40 %	Reduction: optimize / change industrial processes to be more energy efficient Substitution: replace energy with renewable or waste-derived sources	 New generation process controls Next gen biogenic fuels Electrification
CAPTURE	80%	Post-combustion: capture CO2 without affecting the production process Process-specific: modify the production process to emit less or capture more CO2 Use-focused: use waste products as a	 Process capture Post-combustion capture Mineralization
		Use-focused: use waste products as a CO2 sink; use CO2 to make building materials	


Cement Industry – Supp. Cement Material

Limestone Calcined Clay Cement – LC³

- A blend developed by EPFL in Switzerland and made it public for anyone to use;
- It uses 50% less clinker and emits 40% less CO2;
- Kaolinite clay 40-60% is ideal;
- Similar strength as Portland Cement;
- Better chloride and alkali reaction resistance;
- Potential reduction of 400 Mt/year of CO2 if LC³ is used;
- Challenges
 - Changing standards and codes
 - > Finding the right clay in close proximity
 - Willingness to change

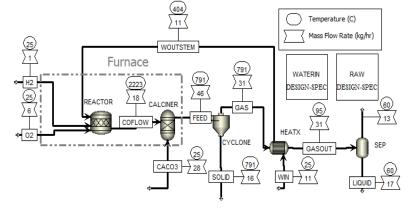
<u>lean</u> Combustion

esearch Center

New Section

Cement Industry – Energy Reduction

Calcination of Limestone and Cement

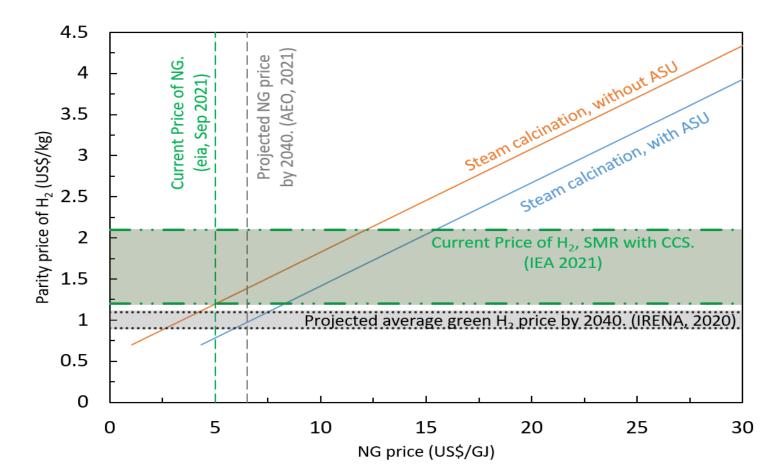

Limestone calcination requires heat at 800 – 950 °C

```
CaCO3 + Heat \rightarrow CaO + CO2
```

- Burning fossil fuels to generate the heat required will produce more CO2 that requires calcination at a higher temperature
- Capturing the CO2 from the exhaust gases (mostly separating CO2 and N2) is expensive and can reach \$100 a ton.
- One option is to use Oxy-Fuel which eliminates the N2. However, the cost of the O2 production and the need to blend CO2 from the exhaust (up to 30%) which again requires higher temperatures makes it less attractive
- Steam can provide the heat needed, has catalytic effects and can be condensed in the exhaust and recycled.

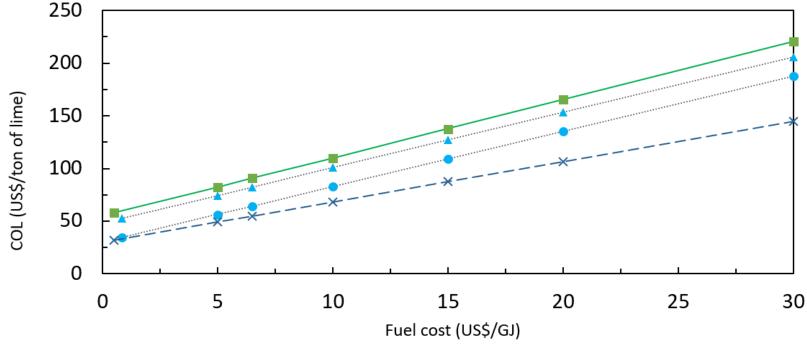
Steam Calcination of Limestone and Cement

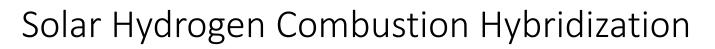
- Steam can be generated from H2/O2/H2O combustion;
- Using steam requires lower temperature and hence reduces energy per ton of lime;
- Hydrogen and oxygen can be produced by electrolysis using renewable electricity;
- Condensing the steam will leave a pure stream of CO2 to be capture, stored or used;
- More than 90% of the water is recycled and 94% of the CO2 is captured;
- Technology is financially competitive with natural gas+capture, when hydrogen cost reaches USD \$2.2/kg.
- Note that this process also applies to Megnocity Deuxite Keelin elevate



Steam Calcination Process Modeling

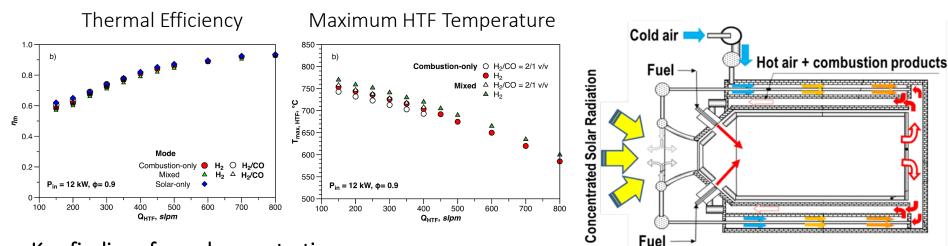
Commercially Confidential


جامعة الملك عبدالله للعلوم والتقنية Parity price of H2 as a function of the NG price



King Abdullah University of Science and Technology

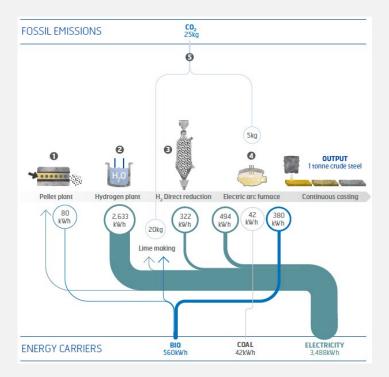
Cost of Lime as function of fuel cost



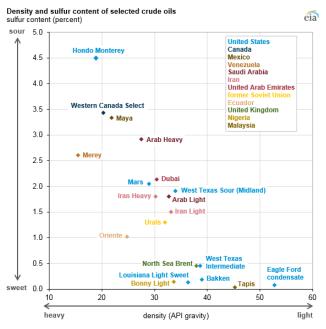
Hybrid Solar Receiver Combustor

Key findings from demonstration

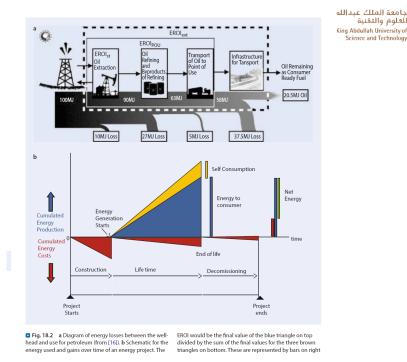
- Efficient operation in the three modes: h_{th} up to 90%, T_{HTF} > 750 °C
- Low solar fluxes can be used to supplement combustion
- Convective losses through aperture < 50% of radiative (no wind)</p>


Nathan, Dally, Ashman, Steinfeld (2013). *PCT Patent App* #PCT/AU2013/000326

		chnology eadiness	Years until plateau of productivity	Develop- ment costs ¹	CAPEX require- ments ²	Operating costs ³	Public acceptance	Possibility to transform brownfield plant
Carbon capture, us storage	e and/or		5-10					
Carbon capture, use storage with bioma			5-10				\bigcirc	
H₂-based direct red iron – Shaft furnac			0-3					
H₂-based direct red iron – Fluidized bec			5-15					
Suspension ironma technology	king		17-22					
Plasma direct steel production			20-25					
Electrolytic processes			20-30					


¹ Compared to the other presented carbon neutral technologies ² Compared to CAPEX of BF-BOF greenfield plant in 2040-2050 ³ Compared to BF-BOF plant in 2040-2050 (incl. carbon tax)

Source: Roland Berger


Hybrit

Crude to Hydrogen opportunity

Source: U.S. Energy Information Administration, 2017

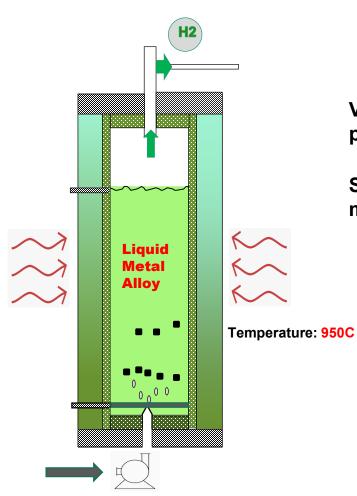
Source: Energy and the wealth of nations: An introduction to biophysical economics. Vol. 511. Springer International Publishing, 2018.

- Crude oil to Hydrogen: Avoids energy & carbon footprint of refining processes; low-or-no CO₂ as a byproduct; ۲ Valorization of solid carbon
- Gasification to syngas to hydrogen: Valorization of petroleum residues; Minimal pre-processing needed

1/10/2023

للعلوم والتقنية

Molten metal pyrolysis of heavy oils

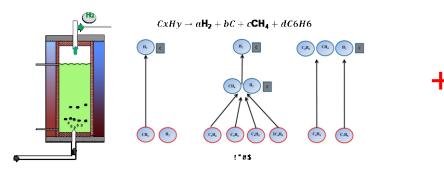

Simpler downstream process for VRO and GFO

100% H₂ selectivity at 950C

Only H2 and C products

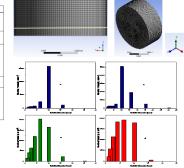
Catalyst regenerates itself

No prior treatment required to remove Sulphur Sulphur collected at downstream cooling process

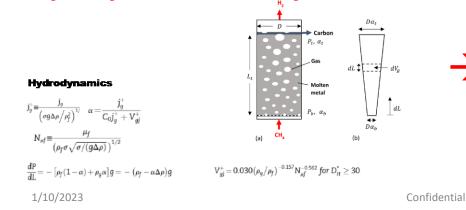


Viscosity check on the feed pump

Strainer to collect heavy metal impurities

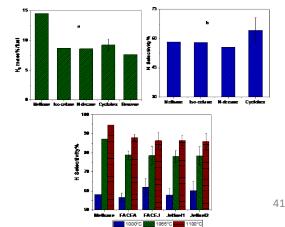


Realistic gas-phase kinetics



Multiphase flow physics

Modeling tool	Ansys Fluent V17			
Dimensionality and	3D with Adaptive Mesh			
type of grid	Refinement			
Turbulence model	RNG k-z;			
hase Interaction	Breakup: KH-RT			
models	Drag-law: Universal			
	Lift: Tomiyam a			
	Dispersion: Sato			
Finne step	Variable time step			
Wultiphase model	PPM (Population Balance			
	model) - 10 bins			
	Aggregation: Luo			
	Breakage: Luo			



Hydrodynamics and catalysis kinetics

┿

Accurate Prediction for H2 from real oils

Microwave based deasphalting and thermo-cracking

Confidential

1/10/2023

Gasification

Supercritical water gasification (SCWG)

Confidential

1/10/2023