

للعلوم والتقنب Science and Technology

وزارة الطاقة MINISTRY OF ENERGY

Artificial intelligence-driven design of fuel mixtures

Nursulu Kuzhagaliyeva¹, Samuel Horvath², Andre Nicolle³, S. Mani Sarathy¹ ¹Clean Combustion Research Center, KAUST, ² Visual Computing Center, KAUST, ³ Aramco Fuel Research center, France

Inverse fuel design framework

Can be implemented as a constrained optimization task

Prediction of mixtures properties remains one of the key bottlenecks for the inverse fuel design

Vlethodology

1. Data curation

- Pure species \rightarrow 19 molecular classes
- Oxygenates \rightarrow 20 and 50% of ON and YSI databases
- 76 complex mixtures

ulougy									
Table 1. Curated database for RON, MON and YSI									
		RON ¹	MON ²	YSI ³					
Pure	OC ⁴	74	67	221					
	NON-OC	290	266	231					
species	total	364	333	452					
Blends	≤10 comp.	372	293	35					
	>10 comp.	76	64	5					
	total	448	357	40					
Total		812	690	492					

¹Reseach Octane Number, ²Motor Octane Number ³Yield Sooting Index, ⁴Oxygenated compounds

2. Joint-properties predictive network

Fig 1. Skeletal network architecture for joint-properties predictive model for pure components and mixtures.

3. Two search approaches to formulate mixtures with desired properties and subject to physical constraints

Compound	FKMC	EPIB7	WS (gL ⁻¹)	AHL (d)	MP (∘C)
Tetramethoxy methane	yes	-0.845	110	3.2	-5
Isopentyl acetate	Yes (if<5%)	0.655	2.0	1.8	-78
Ethylidene cyclopentane	yes	0.203	0.1	0.12	-129

Water solubility, AHL = Atmospheric half-life, MP = Melting point.

- Comprehensive database was curated for pure components and mixtures
- Joint-properties predictive model for pure components and mixtures
- 2 search algorithms to formulate fuels with desired properties

Work in progress

- Extend property database (volatility (Reid Vapor Pressure), density, LHV)
- Implement state-of-the art architectures (GNN)
- Pollutants screening using low dimensional models

KAUST Research Conference: Al for Energy 6-8 March 2023

Results

Summary