Invited 4: Low Temperature Capture integrated with use

CO2 capture and storage technologies have been recognized as the primary option to mitigate the issue of climate change caused by the utilization of fossil fuels. In the last decades, several CO2 capture approaches have been developed, such as absorption, adsorption, membrane, cryogenic, hydrate and chemical looping combustion etc. However, the energy penalty is a general challenge for each technology. To overcome the disadvantages of standalone technology, the combination of two or more approaches (namely hybrid CO2 capture processes) has been considered as a potential option. In the presentation, the status and development of hybrid CO2 capture processes is presented in a classification of primary technology as absorption-based, adsorption-based, membrane-based and cryogenic-based. The detail configuration of each hybrid process is introduced. Simultaneously, the characteristics, advantages and potential challenges of each hybrid process are also summarized. Compared to the standalone methods, hybrid processes showed the superiority not only in CO2 recovery and energy penalty, but also in the installation investment. Therefore, hybrid processes can be a promising alternative to conventional CO2 capture technologies in future.


Chunfeng Song

Professor, School of Environmental Science and Engineering, Tianjin University